Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
a1b17bd2
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
a1b17bd2
编写于
6月 27, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
6月 27, 2020
浏览文件
操作
浏览文件
下载
差异文件
!2593 python unit tests for randomResizeWithBBox and ResizeWithBBox
Merge pull request !2593 from ava/python_ut_tests
上级
bfc2f142
1e869146
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
225 addition
and
426 deletion
+225
-426
tests/ut/data/dataset/golden/random_resize_with_bbox_op_01_c_result.npz
...dataset/golden/random_resize_with_bbox_op_01_c_result.npz
+0
-0
tests/ut/data/dataset/golden/resize_with_bbox_op_01_c_result.npz
...t/data/dataset/golden/resize_with_bbox_op_01_c_result.npz
+0
-0
tests/ut/python/dataset/test_random_resize_with_bbox.py
tests/ut/python/dataset/test_random_resize_with_bbox.py
+126
-197
tests/ut/python/dataset/test_resize_with_bbox.py
tests/ut/python/dataset/test_resize_with_bbox.py
+99
-229
未找到文件。
tests/ut/data/dataset/golden/random_resize_with_bbox_op_01_c_result.npz
0 → 100644
浏览文件 @
a1b17bd2
文件已添加
tests/ut/data/dataset/golden/resize_with_bbox_op_01_c_result.npz
0 → 100644
浏览文件 @
a1b17bd2
文件已添加
tests/ut/python/dataset/test_random_resize_with_bbox.py
浏览文件 @
a1b17bd2
...
...
@@ -15,251 +15,180 @@
"""
Testing the random resize with bounding boxes op in DE
"""
from
enum
import
Enum
import
matplotlib.pyplot
as
plt
import
matplotlib.patches
as
patches
import
numpy
as
np
import
mindspore.dataset
as
ds
from
mindspore
import
log
as
logger
import
mindspore.dataset.transforms.vision.c_transforms
as
c_vision
from
mindspore
import
log
as
logger
from
util
import
visualize_with_bounding_boxes
,
InvalidBBoxType
,
check_bad_bbox
,
\
config_get_set_seed
,
config_get_set_num_parallel_workers
,
save_and_check_md5
GENERATE_GOLDEN
=
False
DATA_DIR
=
"../data/dataset/testVOC2012"
DATA_DIR
=
"../data/dataset/testVOC2012
_2
"
def
fix_annotate
(
bboxes
):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for
bbox
in
bboxes
:
tmp
=
bbox
[
0
]
bbox
[
0
]
=
bbox
[
1
]
bbox
[
1
]
=
bbox
[
2
]
bbox
[
2
]
=
bbox
[
3
]
bbox
[
3
]
=
bbox
[
4
]
bbox
[
4
]
=
tmp
for
(
i
,
box
)
in
enumerate
(
bboxes
):
bboxes
[
i
]
=
np
.
roll
(
box
,
-
1
)
return
bboxes
class
BoxType
(
Enum
):
"""
Defines box types for test cases
"""
WidthOverflow
=
1
HeightOverflow
=
2
NegativeXY
=
3
OnEdge
=
4
WrongShape
=
5
class
AddBadAnnotation
:
# pylint: disable=too-few-public-methods
def
test_random_resize_with_bbox_op_rand_c
(
plot_vis
=
False
):
"""
Used to add erroneous bounding boxes to object detection pipelines.
Usage:
>>> # Adds a box that covers the whole image. Good for testing edge cases
>>> de = de.map(input_columns=["image", "annotation"],
>>> output_columns=["image", "annotation"],
>>> operations=AddBadAnnotation(BoxType.OnEdge))
Prints images and bboxes side by side with and without RandomResizeWithBBox Op applied,
tests with MD5 check, expected to pass
"""
logger
.
info
(
"test_random_resize_with_bbox_rand_c"
)
original_seed
=
config_get_set_seed
(
1
)
original_num_parallel_workers
=
config_get_set_num_parallel_workers
(
1
)
def
__init__
(
self
,
box_type
):
self
.
box_type
=
box_type
# Load dataset
dataVoc1
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
def
__call__
(
self
,
img
,
bboxes
):
"""
Used to generate erroneous bounding box examples on given img.
:param img: image where the bounding boxes are.
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
:return: bboxes with bad examples added
"""
height
=
img
.
shape
[
0
]
width
=
img
.
shape
[
1
]
if
self
.
box_type
==
BoxType
.
WidthOverflow
:
# use box that overflows on width
return
img
,
np
.
array
([[
0
,
0
,
width
+
1
,
height
-
1
,
0
,
0
,
0
]]).
astype
(
np
.
uint32
)
dataVoc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
if
self
.
box_type
==
BoxType
.
HeightOverflow
:
# use box that overflows on height
return
img
,
np
.
array
([[
0
,
0
,
width
-
1
,
height
+
1
,
0
,
0
,
0
]]).
astype
(
np
.
uint32
)
test_op
=
c_vision
.
RandomResizeWithBBox
(
200
)
if
self
.
box_type
==
BoxType
.
NegativeXY
:
# use box with negative xy
return
img
,
np
.
array
([[
-
10
,
-
10
,
width
-
1
,
height
-
1
,
0
,
0
,
0
]]).
astype
(
np
.
uint32
)
if
self
.
box_type
==
BoxType
.
OnEdge
:
# use box that covers the whole image
return
img
,
np
.
array
([[
0
,
0
,
width
-
1
,
height
-
1
,
0
,
0
,
0
]]).
astype
(
np
.
uint32
)
if
self
.
box_type
==
BoxType
.
WrongShape
:
# use box that covers the whole image
return
img
,
np
.
array
([[
0
,
0
,
width
-
1
]]).
astype
(
np
.
uint32
)
return
img
,
bboxes
def
check_bad_box
(
data
,
box_type
,
expected_error
):
try
:
test_op
=
c_vision
.
RandomResizeWithBBox
(
100
)
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
data
=
data
.
map
(
input_columns
=
[
"annotation"
],
dataVoc1
=
dataVoc1
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
# map to use width overflow
data
=
data
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
AddBadAnnotation
(
box_type
))
# Add column for "annotation"
# map to apply ops
data
=
data
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
test_op
])
# Add column for "annotation"
for
_
,
_
in
enumerate
(
data
.
create_dict_iterator
()):
break
except
RuntimeError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
expected_error
in
str
(
e
)
operations
=
[
test_op
])
filename
=
"random_resize_with_bbox_op_01_c_result.npz"
save_and_check_md5
(
dataVoc2
,
filename
,
generate_golden
=
GENERATE_GOLDEN
)
def
add_bounding_boxes
(
axis
,
bboxes
):
"""
:param axis: axis to modify
:param bboxes: bounding boxes to draw on the axis
:return: None
"""
for
bbox
in
bboxes
:
rect
=
patches
.
Rectangle
((
bbox
[
0
],
bbox
[
1
]),
bbox
[
2
],
bbox
[
3
],
linewidth
=
1
,
edgecolor
=
'r'
,
facecolor
=
'none'
)
# Add the patch to the Axes
axis
.
add_patch
(
rect
)
def
visualize
(
unaugmented_data
,
augment_data
):
for
idx
,
(
un_aug_item
,
aug_item
)
in
\
enumerate
(
zip
(
unaugmented_data
.
create_dict_iterator
(),
augment_data
.
create_dict_iterator
())):
axis
=
plt
.
subplot
(
141
)
plt
.
imshow
(
un_aug_item
[
"image"
])
add_bounding_boxes
(
axis
,
un_aug_item
[
"annotation"
])
# add Orig BBoxes
plt
.
title
(
"Original"
+
str
(
idx
+
1
))
logger
.
info
(
"Original "
,
str
(
idx
+
1
),
" :"
,
un_aug_item
[
"annotation"
])
axis
=
plt
.
subplot
(
142
)
plt
.
imshow
(
aug_item
[
"image"
])
add_bounding_boxes
(
axis
,
aug_item
[
"annotation"
])
# add AugBBoxes
plt
.
title
(
"Augmented"
+
str
(
idx
+
1
))
logger
.
info
(
"Augmented "
,
str
(
idx
+
1
),
" "
,
aug_item
[
"annotation"
],
"
\n
"
)
plt
.
show
()
def
test_random_resize_with_bbox_op
(
plot
=
False
):
unaugSamp
,
augSamp
=
[],
[]
for
unAug
,
Aug
in
zip
(
dataVoc1
.
create_dict_iterator
(),
dataVoc2
.
create_dict_iterator
()):
unaugSamp
.
append
(
unAug
)
augSamp
.
append
(
Aug
)
if
plot_vis
:
visualize_with_bounding_boxes
(
unaugSamp
,
augSamp
)
# Restore config setting
ds
.
config
.
set_seed
(
original_seed
)
ds
.
config
.
set_num_parallel_workers
(
original_num_parallel_workers
)
def
test_random_resize_with_bbox_op_edge_c
(
plot_vis
=
False
):
"""
Test random_resize_with_bbox_op
Prints images and bboxes side by side with and without RandomresizeWithBBox Op applied,
applied on dynamically generated edge case, expected to pass. edge case is when bounding
box has dimensions as the image itself.
"""
logger
.
info
(
"Test random resize with bbox"
)
logger
.
info
(
"test_random_resize_with_bbox_op_edge_c"
)
dataVoc1
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
# original images
data_original
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
dataVoc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
# augmented images
data_augmented
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
test_op
=
c_vision
.
RandomResizeWithBBox
(
500
)
data
_original
=
data_original
.
map
(
input_columns
=
[
"annotation"
],
data
Voc1
=
dataVoc1
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
data_augmented
=
data_augmented
.
map
(
input_columns
=
[
"annotation"
],
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
# define map operations
test_op
=
c_vision
.
RandomResizeWithBBox
(
100
)
# input value being the target size of resizeOp
# maps to convert data into valid edge case data
dataVoc1
=
dataVoc1
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
lambda
img
,
bboxes
:
(
img
,
np
.
array
([[
0
,
0
,
img
.
shape
[
1
],
img
.
shape
[
0
]]]).
astype
(
bboxes
.
dtype
))])
data
_augmented
=
data_augmented
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
data
Voc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
test_op
])
if
plot
:
visualize
(
data_original
,
data_augmented
)
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
lambda
img
,
bboxes
:
(
img
,
np
.
array
([[
0
,
0
,
img
.
shape
[
1
],
img
.
shape
[
0
]]]).
astype
(
bboxes
.
dtype
)),
test_op
]
)
unaugSamp
,
augSamp
=
[],
[]
def
test_random_resize_with_bbox_invalid_bounds
():
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_box
(
data_voc2
,
BoxType
.
WidthOverflow
,
"bounding boxes is out of bounds of the image"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_box
(
data_voc2
,
BoxType
.
HeightOverflow
,
"bounding boxes is out of bounds of the image"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_box
(
data_voc2
,
BoxType
.
NegativeXY
,
"min_x"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_box
(
data_voc2
,
BoxType
.
WrongShape
,
"4 features"
)
for
unAug
,
Aug
in
zip
(
dataVoc1
.
create_dict_iterator
(),
dataVoc2
.
create_dict_iterator
()):
unaugSamp
.
append
(
unAug
)
augSamp
.
append
(
Aug
)
if
plot_vis
:
visualize_with_bounding_boxes
(
unaugSamp
,
augSamp
)
def
test_random_resize_with_bbox_
invalid_size
():
def
test_random_resize_with_bbox_
op_invalid_c
():
"""
Test random_resize_with_bbox_op
Test RandomResizeWithBBox Op on invalid constructor parameters, expected to raise ValueError
"""
logger
.
info
(
"Test random resize with bbox with invalid target size"
)
# original images
data
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
data
=
data
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
logger
.
info
(
"test_random_resize_with_bbox_op_invalid_c"
)
# negative target size as input
try
:
test_op
=
c_vision
.
RandomResizeWithBBox
(
-
10
)
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
# zero value for resize
c_vision
.
RandomResizeWithBBox
(
0
)
# map to apply ops
data
=
data
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
test_op
])
# Add column for "annotation"
except
ValueError
as
err
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
err
)))
assert
"Input is not"
in
str
(
err
)
for
_
,
_
in
enumerate
(
data
.
create_dict_iterator
()):
break
try
:
# one of the size values is zero
c_vision
.
RandomResizeWithBBox
((
0
,
100
))
except
ValueError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
print
(
e
)
assert
"Input is not"
in
str
(
e
)
except
ValueError
as
err
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
err
)))
assert
"Input is not"
in
str
(
err
)
# zero target size as input
try
:
test_op
=
c_vision
.
RandomResizeWithBBox
(
0
)
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
# negative value for resize
c_vision
.
RandomResizeWithBBox
(
-
10
)
# map to apply ops
data
=
data
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
test_op
])
# Add column for "annotation"
except
ValueError
as
err
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
err
)))
assert
"Input is not"
in
str
(
err
)
for
_
,
_
in
enumerate
(
data
.
create_dict_iterator
()):
break
try
:
# invalid input shape
c_vision
.
RandomResizeWithBBox
((
100
,
100
,
100
))
except
ValueError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"
Input is not"
in
str
(
e
)
except
TypeError
as
err
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
rr
)))
assert
"
Size should be"
in
str
(
err
)
# invalid input shape
try
:
test_op
=
c_vision
.
RandomResizeWithBBox
((
10
,
10
,
10
))
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
# map to apply ops
data
=
data
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
test_op
])
# Add column for "annotation"
def
test_random_resize_with_bbox_op_bad_c
():
"""
Tests RandomResizeWithBBox Op with invalid bounding boxes, expected to catch multiple errors
"""
logger
.
info
(
"test_random_resize_with_bbox_op_bad_c"
)
test_op
=
c_vision
.
RandomResizeWithBBox
((
400
,
300
))
for
_
,
_
in
enumerate
(
data
.
create_dict_iterator
()):
break
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_bbox
(
data_voc2
,
test_op
,
InvalidBBoxType
.
WidthOverflow
,
"bounding boxes is out of bounds of the image"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_bbox
(
data_voc2
,
test_op
,
InvalidBBoxType
.
HeightOverflow
,
"bounding boxes is out of bounds of the image"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_bbox
(
data_voc2
,
test_op
,
InvalidBBoxType
.
NegativeXY
,
"min_x"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_bbox
(
data_voc2
,
test_op
,
InvalidBBoxType
.
WrongShape
,
"4 features"
)
except
TypeError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"Size should be"
in
str
(
e
)
if
__name__
==
"__main__"
:
test_random_resize_with_bbox_op
(
plot
=
False
)
test_random_resize_with_bbox_invalid_bounds
()
test_random_resize_with_bbox_invalid_size
()
test_random_resize_with_bbox_op_rand_c
(
plot_vis
=
False
)
test_random_resize_with_bbox_op_edge_c
(
plot_vis
=
False
)
test_random_resize_with_bbox_op_invalid_c
()
test_random_resize_with_bbox_op_bad_c
()
tests/ut/python/dataset/test_resize_with_bbox.py
浏览文件 @
a1b17bd2
...
...
@@ -15,281 +15,151 @@
"""
Testing the resize with bounding boxes op in DE
"""
from
enum
import
Enum
import
numpy
as
np
import
matplotlib.patches
as
patches
import
matplotlib.pyplot
as
plt
import
mindspore.dataset
as
ds
import
mindspore.dataset.transforms.vision.c_transforms
as
c_vision
from
mindspore
import
log
as
logger
import
mindspore.dataset
as
ds
from
util
import
visualize_with_bounding_boxes
,
InvalidBBoxType
,
check_bad_bbox
,
\
save_and_check_md5
GENERATE_GOLDEN
=
False
DATA_DIR
=
"../data/dataset/testVOC2012"
DATA_DIR
=
"../data/dataset/testVOC2012
_2
"
def
fix_annotate
(
bboxes
):
"""
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
"""
for
bbox
in
bboxes
:
tmp
=
bbox
[
0
]
bbox
[
0
]
=
bbox
[
1
]
bbox
[
1
]
=
bbox
[
2
]
bbox
[
2
]
=
bbox
[
3
]
bbox
[
3
]
=
bbox
[
4
]
bbox
[
4
]
=
tmp
for
(
i
,
box
)
in
enumerate
(
bboxes
):
bboxes
[
i
]
=
np
.
roll
(
box
,
-
1
)
return
bboxes
class
BoxType
(
Enum
):
def
test_resize_with_bbox_op_c
(
plot_vis
=
False
):
"""
Defines box types for test cases
Prints images and bboxes side by side with and without ResizeWithBBox Op applied,
tests with MD5 check, expected to pass
"""
WidthOverflow
=
1
HeightOverflow
=
2
NegativeXY
=
3
OnEdge
=
4
WrongShape
=
5
logger
.
info
(
"test_resize_with_bbox_op_c"
)
# Load dataset
dataVoc1
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
class
AddBadAnnotation
:
# pylint: disable=too-few-public-methods
"""
Used to add erroneous bounding boxes to object detection pipelines.
Usage:
>>> # Adds a box that covers the whole image. Good for testing edge cases
>>> de = de.map(input_columns=["image", "annotation"],
>>> output_columns=["image", "annotation"],
>>> operations=AddBadAnnotation(BoxType.OnEdge))
"""
def
__init__
(
self
,
box_type
):
self
.
box_type
=
box_type
def
__call__
(
self
,
img
,
bboxes
):
"""
Used to generate erroneous bounding box examples on given img.
:param img: image where the bounding boxes are.
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
:return: bboxes with bad examples added
"""
height
=
img
.
shape
[
0
]
width
=
img
.
shape
[
1
]
if
self
.
box_type
==
BoxType
.
WidthOverflow
:
# use box that overflows on width
return
img
,
np
.
array
([[
0
,
0
,
width
+
1
,
height
-
1
,
0
,
0
,
0
]]).
astype
(
np
.
uint32
)
dataVoc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
if
self
.
box_type
==
BoxType
.
HeightOverflow
:
# use box that overflows on height
return
img
,
np
.
array
([[
0
,
0
,
width
-
1
,
height
+
1
,
0
,
0
,
0
]]).
astype
(
np
.
uint32
)
test_op
=
c_vision
.
ResizeWithBBox
(
200
)
if
self
.
box_type
==
BoxType
.
NegativeXY
:
# use box with negative xy
return
img
,
np
.
array
([[
-
10
,
-
10
,
width
-
1
,
height
-
1
,
0
,
0
,
0
]]).
astype
(
np
.
uint32
)
if
self
.
box_type
==
BoxType
.
OnEdge
:
# use box that covers the whole image
return
img
,
np
.
array
([[
0
,
0
,
width
-
1
,
height
-
1
,
0
,
0
,
0
]]).
astype
(
np
.
uint32
)
if
self
.
box_type
==
BoxType
.
WrongShape
:
# use box that covers the whole image
return
img
,
np
.
array
([[
0
,
0
,
width
-
1
]]).
astype
(
np
.
uint32
)
return
img
,
bboxes
def
check_bad_box
(
data
,
box_type
,
expected_error
):
try
:
test_op
=
c_vision
.
ResizeWithBBox
(
100
)
data
=
data
.
map
(
input_columns
=
[
"annotation"
],
dataVoc1
=
dataVoc1
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
# map to use width overflow
data
=
data
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
AddBadAnnotation
(
box_type
))
# Add column for "annotation"
# map to apply ops
data
=
data
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
test_op
])
# Add column for "annotation"
for
_
,
_
in
enumerate
(
data
.
create_dict_iterator
()):
break
except
RuntimeError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
expected_error
in
str
(
e
)
operations
=
[
test_op
])
filename
=
"resize_with_bbox_op_01_c_result.npz"
save_and_check_md5
(
dataVoc2
,
filename
,
generate_golden
=
GENERATE_GOLDEN
)
def
add_bounding_boxes
(
axis
,
bboxes
):
"""
:param axis: axis to modify
:param bboxes: bounding boxes to draw on the axis
:return: None
"""
for
bbox
in
bboxes
:
rect
=
patches
.
Rectangle
((
bbox
[
0
],
bbox
[
1
]),
bbox
[
2
],
bbox
[
3
],
linewidth
=
1
,
edgecolor
=
'r'
,
facecolor
=
'none'
)
# Add the patch to the Axes
axis
.
add_patch
(
rect
)
def
visualize
(
unaugmented_data
,
augment_data
):
for
idx
,
(
un_aug_item
,
aug_item
)
in
enumerate
(
zip
(
unaugmented_data
.
create_dict_iterator
(),
augment_data
.
create_dict_iterator
())):
axis
=
plt
.
subplot
(
141
)
plt
.
imshow
(
un_aug_item
[
"image"
])
add_bounding_boxes
(
axis
,
un_aug_item
[
"annotation"
])
# add Orig BBoxes
plt
.
title
(
"Original"
+
str
(
idx
+
1
))
logger
.
info
(
"Original "
,
str
(
idx
+
1
),
" :"
,
un_aug_item
[
"annotation"
])
axis
=
plt
.
subplot
(
142
)
plt
.
imshow
(
aug_item
[
"image"
])
add_bounding_boxes
(
axis
,
aug_item
[
"annotation"
])
# add AugBBoxes
plt
.
title
(
"Augmented"
+
str
(
idx
+
1
))
logger
.
info
(
"Augmented "
,
str
(
idx
+
1
),
" "
,
aug_item
[
"annotation"
],
"
\n
"
)
plt
.
show
()
def
test_resize_with_bbox_op
(
plot
=
False
):
"""
Test resize_with_bbox_op
"""
logger
.
info
(
"Test resize with bbox"
)
unaugSamp
,
augSamp
=
[],
[]
# original images
data_original
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
# augmented images
data_augmented
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
data_original
=
data_original
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
for
unAug
,
Aug
in
zip
(
dataVoc1
.
create_dict_iterator
(),
dataVoc2
.
create_dict_iterator
()):
unaugSamp
.
append
(
unAug
)
augSamp
.
append
(
Aug
)
data_augmented
=
data_augmented
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
# define map operations
test_op
=
c_vision
.
ResizeWithBBox
(
100
)
# input value being the target size of resizeOp
data_augmented
=
data_augmented
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
test_op
])
if
plot
:
visualize
(
data_original
,
data_augmented
)
def
test_resize_with_bbox_invalid_bounds
():
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_box
(
data_voc2
,
BoxType
.
WidthOverflow
,
"bounding boxes is out of bounds of the image"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_box
(
data_voc2
,
BoxType
.
HeightOverflow
,
"bounding boxes is out of bounds of the image"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_box
(
data_voc2
,
BoxType
.
NegativeXY
,
"min_x"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_box
(
data_voc2
,
BoxType
.
WrongShape
,
"4 features"
)
if
plot_vis
:
visualize_with_bounding_boxes
(
unaugSamp
,
augSamp
)
def
test_resize_with_bbox_
invalid_size
(
):
def
test_resize_with_bbox_
op_edge_c
(
plot_vis
=
False
):
"""
Test resize_with_bbox_op
Prints images and bboxes side by side with and without ResizeWithBBox Op applied,
applied on dynamically generated edge case, expected to pass. edge case is when bounding
box has dimensions as the image itself.
"""
logger
.
info
(
"Test resize with bbox with invalid target size"
)
logger
.
info
(
"test_resize_with_bbox_op_edge_c"
)
dataVoc1
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
# original images
data
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
dataVoc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
data
=
data
.
map
(
input_columns
=
[
"annotation"
],
test_op
=
c_vision
.
ResizeWithBBox
(
500
)
dataVoc1
=
dataVoc1
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
# negative target size as input
try
:
test_op
=
c_vision
.
ResizeWithBBox
(
-
10
)
# map to apply ops
data
=
data
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
# maps to convert data into valid edge case data
dataVoc1
=
dataVoc1
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
test_op
])
# Add column for "annotation"
operations
=
[
lambda
img
,
bboxes
:
(
img
,
np
.
array
([[
0
,
0
,
img
.
shape
[
1
],
img
.
shape
[
0
]]]).
astype
(
bboxes
.
dtype
))])
for
_
,
_
in
enumerate
(
data
.
create_dict_iterator
()):
break
except
ValueError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"Input is not"
in
str
(
e
)
# zero target size as input
try
:
test_op
=
c_vision
.
ResizeWithBBox
(
0
)
# map to apply ops
data
=
data
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
# Test Op added to list of Operations here
dataVoc2
=
dataVoc2
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
test_op
])
# Add column for "annotation"
for
_
,
_
in
enumerate
(
data
.
create_dict_iterator
()):
break
except
ValueError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"Input is not"
in
str
(
e
)
# invalid input shape
try
:
test_op
=
c_vision
.
ResizeWithBBox
((
10
,
10
,
10
))
operations
=
[
lambda
img
,
bboxes
:
(
img
,
np
.
array
([[
0
,
0
,
img
.
shape
[
1
],
img
.
shape
[
0
]]]).
astype
(
bboxes
.
dtype
)),
test_op
])
# map to apply ops
data
=
data
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
test_op
])
# Add column for "annotation"
unaugSamp
,
augSamp
=
[],
[]
for
_
,
_
in
enumerate
(
data
.
create_dict_iterator
()):
break
for
unAug
,
Aug
in
zip
(
dataVoc1
.
create_dict_iterator
(),
dataVoc2
.
create_dict_iterator
()):
unaugSamp
.
append
(
unAug
)
augSamp
.
append
(
Aug
)
except
TypeError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"Size should be"
in
str
(
e
)
if
plot_vis
:
visualize_with_bounding_boxes
(
unaugSamp
,
augSamp
)
def
test_resize_with_bbox_
invalid_interpolation
():
def
test_resize_with_bbox_
op_invalid_c
():
"""
Test resize_with_bbox_op
Test ResizeWithBBox Op on invalid constructor parameters, expected to raise ValueError
"""
logger
.
info
(
"
Test resize with bbox with invalid interpolation size
"
)
logger
.
info
(
"
test_resize_with_bbox_op_invalid_c
"
)
# original images
data
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
try
:
# invalid interpolation value
c_vision
.
ResizeWithBBox
(
400
,
interpolation
=
"invalid"
)
data
=
data
.
map
(
input_columns
=
[
"annotation"
],
output_columns
=
[
"annotation"
],
operations
=
fix_annotate
)
except
ValueError
as
err
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
err
)))
assert
"interpolation"
in
str
(
err
)
# invalid interpolation
try
:
test_op
=
c_vision
.
ResizeWithBBox
(
100
,
interpolation
=
"invalid"
)
# map to apply ops
data
=
data
.
map
(
input_columns
=
[
"image"
,
"annotation"
],
output_columns
=
[
"image"
,
"annotation"
],
columns_order
=
[
"image"
,
"annotation"
],
operations
=
[
test_op
])
# Add column for "annotation"
def
test_resize_with_bbox_op_bad_c
():
"""
Tests ResizeWithBBox Op with invalid bounding boxes, expected to catch multiple errors
"""
logger
.
info
(
"test_resize_with_bbox_op_bad_c"
)
test_op
=
c_vision
.
ResizeWithBBox
((
200
,
300
))
for
_
,
_
in
enumerate
(
data
.
create_dict_iterator
()):
break
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_bbox
(
data_voc2
,
test_op
,
InvalidBBoxType
.
WidthOverflow
,
"bounding boxes is out of bounds of the image"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_bbox
(
data_voc2
,
test_op
,
InvalidBBoxType
.
HeightOverflow
,
"bounding boxes is out of bounds of the image"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_bbox
(
data_voc2
,
test_op
,
InvalidBBoxType
.
NegativeXY
,
"min_x"
)
data_voc2
=
ds
.
VOCDataset
(
DATA_DIR
,
task
=
"Detection"
,
mode
=
"train"
,
decode
=
True
,
shuffle
=
False
)
check_bad_bbox
(
data_voc2
,
test_op
,
InvalidBBoxType
.
WrongShape
,
"4 features"
)
except
ValueError
as
e
:
logger
.
info
(
"Got an exception in DE: {}"
.
format
(
str
(
e
)))
assert
"interpolation"
in
str
(
e
)
if
__name__
==
"__main__"
:
test_resize_with_bbox_op
(
plot
=
False
)
test_resize_with_bbox_
invalid_bounds
(
)
test_resize_with_bbox_
invalid_size
()
test_resize_with_bbox_
invalid_interpolation
()
test_resize_with_bbox_op
_c
(
plot_vis
=
False
)
test_resize_with_bbox_
op_edge_c
(
plot_vis
=
False
)
test_resize_with_bbox_
op_invalid_c
()
test_resize_with_bbox_
op_bad_c
()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录