From 9be52e0a1b05220f8f23ab6ef0263b44b8d5e63d Mon Sep 17 00:00:00 2001 From: chenzomi Date: Thu, 18 Jun 2020 16:32:27 +0800 Subject: [PATCH] remove _quant_op.py from __init__.py --- mindspore/nn/layer/quant.py | 27 +++++++------- mindspore/ops/_grad/grad_quant_ops.py | 37 ++++++++++--------- mindspore/ops/operations/__init__.py | 1 - mindspore/ops/operations/_quant_ops.py | 12 +++--- tests/st/ops/gpu/test_batchnorm_fold2_op.py | 3 +- .../st/ops/gpu/test_batchnorm_fold_grad_op.py | 4 +- tests/st/ops/gpu/test_batchnorm_fold_op.py | 4 +- .../st/ops/gpu/test_correction_mul_grad_op.py | 4 +- tests/st/ops/gpu/test_correction_mul_op.py | 4 +- 9 files changed, 49 insertions(+), 47 deletions(-) diff --git a/mindspore/nn/layer/quant.py b/mindspore/nn/layer/quant.py index f573fc562..e7e41670a 100644 --- a/mindspore/nn/layer/quant.py +++ b/mindspore/nn/layer/quant.py @@ -27,6 +27,7 @@ from mindspore._checkparam import Validator as validator, Rel from mindspore.nn.cell import Cell from mindspore.nn.layer.activation import get_activation import mindspore.context as context +from ...ops.operations import _quant_ops as Q __all__ = [ 'FakeQuantWithMinMax', @@ -75,11 +76,11 @@ class BatchNormFoldCell(Cell): self.epsilon = epsilon self.is_gpu = context.get_context('device_target') == "GPU" if self.is_gpu: - self.bn_train = P.BatchNormFold(momentum, epsilon, is_training=True, freeze_bn=freeze_bn) - self.bn_infer = P.BatchNormFold(momentum, epsilon, is_training=False, freeze_bn=freeze_bn) + self.bn_train = Q.BatchNormFold(momentum, epsilon, is_training=True, freeze_bn=freeze_bn) + self.bn_infer = Q.BatchNormFold(momentum, epsilon, is_training=False, freeze_bn=freeze_bn) else: - self.bn_reduce = P.BNTrainingReduce() - self.bn_update = P.BatchNormFoldD(momentum, epsilon, is_training=True, freeze_bn=freeze_bn) + self.bn_reduce = Q.BNTrainingReduce() + self.bn_update = Q.BatchNormFoldD(momentum, epsilon, is_training=True, freeze_bn=freeze_bn) def construct(self, x, mean, variance, global_step): if self.is_gpu: @@ -170,11 +171,11 @@ class FakeQuantWithMinMax(Cell): # init fake quant relative op if per_channel: - quant_fun = partial(P.FakeQuantPerChannel, channel_axis=self.channel_axis) - ema_fun = partial(P.FakeQuantMinMaxPerChannelUpdate, channel_axis=self.channel_axis) + quant_fun = partial(Q.FakeQuantPerChannel, channel_axis=self.channel_axis) + ema_fun = partial(Q.FakeQuantMinMaxPerChannelUpdate, channel_axis=self.channel_axis) else: - quant_fun = P.FakeQuantPerLayer - ema_fun = P.FakeQuantMinMaxPerLayerUpdate + quant_fun = Q.FakeQuantPerLayer + ema_fun = Q.FakeQuantMinMaxPerLayerUpdate if self.is_ascend: self.fake_quant = quant_fun(num_bits=self.num_bits, @@ -343,13 +344,13 @@ class Conv2dBatchNormQuant(Cell): symmetric=symmetric, narrow_range=narrow_range) self.batchnorm_fold = BatchNormFoldCell(epsilon=eps, momentum=momentum, freeze_bn=freeze_bn) - self.correct_mul = P.CorrectionMul(channel_axis) + self.correct_mul = Q.CorrectionMul(channel_axis) if context.get_context('device_target') == "Ascend": - self.batchnorm_fold2_train = P.BatchNormFold2_D(freeze_bn=freeze_bn) - self.batchnorm_fold2_infer = P.BatchNormFold2_D(freeze_bn=0) + self.batchnorm_fold2_train = Q.BatchNormFold2_D(freeze_bn=freeze_bn) + self.batchnorm_fold2_infer = Q.BatchNormFold2_D(freeze_bn=0) elif context.get_context('device_target') == "GPU": - self.batchnorm_fold2_train = P.BatchNormFold2(freeze_bn=freeze_bn) - self.batchnorm_fold2_infer = P.BatchNormFold2(freeze_bn=0) + self.batchnorm_fold2_train = Q.BatchNormFold2(freeze_bn=freeze_bn) + self.batchnorm_fold2_infer = Q.BatchNormFold2(freeze_bn=0) else: raise ValueError("Unsupported platform: {}".format(context.get_context('device_target'))) self.step = Parameter(initializer('normal', [1], dtype=mstype.int32), name='step', requires_grad=False) diff --git a/mindspore/ops/_grad/grad_quant_ops.py b/mindspore/ops/_grad/grad_quant_ops.py index c1a272712..da19662e9 100644 --- a/mindspore/ops/_grad/grad_quant_ops.py +++ b/mindspore/ops/_grad/grad_quant_ops.py @@ -16,15 +16,16 @@ """Generate bprop for aware quantization ops""" from .. import operations as P +from ..operations import _quant_ops as Q from .grad_base import bprop_getters from ..composite.multitype_ops.zeros_like_impl import zeros_like from ... import context -@bprop_getters.register(P.FakeQuantPerLayer) +@bprop_getters.register(Q.FakeQuantPerLayer) def get_bprop_fakequant_with_minmax(self): """Generate bprop for FakeQuantPerLayer for GPU and Ascend""" - op = P.FakeQuantPerLayerGrad( + op = Q.FakeQuantPerLayerGrad( num_bits=self.num_bits, quant_delay=self.quant_delay) def bprop(x, x_min, x_max, out, dout): @@ -34,10 +35,10 @@ def get_bprop_fakequant_with_minmax(self): return bprop -@bprop_getters.register(P.FakeQuantPerChannel) +@bprop_getters.register(Q.FakeQuantPerChannel) def get_bprop_fakequant_with_minmax_perchannel(self): """Generate bprop for FakeQuantPerChannel""" - op = P.FakeQuantPerChannelGrad(num_bits=self.num_bits, + op = Q.FakeQuantPerChannelGrad(num_bits=self.num_bits, quant_delay=self.quant_delay, symmetric=self.symmetric, narrow_range=self.symmetric, @@ -50,10 +51,10 @@ def get_bprop_fakequant_with_minmax_perchannel(self): return bprop -@bprop_getters.register(P.BatchNormFold) +@bprop_getters.register(Q.BatchNormFold) def get_bprop_batchnorm_fold(self): """Generate bprop for BatchNormFold for GPU""" - op = P.BatchNormFoldGrad(self.epsilon, self.is_training, self.freeze_bn) + op = Q.BatchNormFoldGrad(self.epsilon, self.is_training, self.freeze_bn) def bprop(x, mean, variance, global_step, out, dout): dx = op(dout[0], dout[1], x, out[0], out[1], global_step) @@ -62,11 +63,11 @@ def get_bprop_batchnorm_fold(self): return bprop -@bprop_getters.register(P.CorrectionMul) +@bprop_getters.register(Q.CorrectionMul) def get_bprop_correction_mul(self): """Generate bprop for CorrectionMul for Ascend and GPU""" - grad_dx = P.CorrectionMulGrad(self.channel_axis) - grad_d_batch_std = P.CorrectionMulGradReduce(self.channel_axis) + grad_dx = Q.CorrectionMulGrad(self.channel_axis) + grad_d_batch_std = Q.CorrectionMulGradReduce(self.channel_axis) def bprop(x, batch_std, running_std, out, dout): dx, d_batch_std = grad_dx(dout, x, batch_std, running_std) @@ -83,10 +84,10 @@ def get_bprop_correction_mul(self): return bprop -@bprop_getters.register(P.BatchNormFold2) +@bprop_getters.register(Q.BatchNormFold2) def get_bprop_batchnorm_fold2(self): """Generate bprop for BatchNormFold2 for GPU""" - op_f = P.BatchNormFold2Grad(freeze_bn=self.freeze_bn) + op_f = Q.BatchNormFold2Grad(freeze_bn=self.freeze_bn) def bprop(x, beta, gamma, batch_std, batch_mean, running_std, running_mean, global_step, out, dout): d_batch_std, d_batch_mean, d_beta, d_gamma, d_x = op_f(dout, x, gamma, batch_std, batch_mean, running_std, @@ -97,10 +98,10 @@ def get_bprop_batchnorm_fold2(self): return bprop -@bprop_getters.register(P.BatchNormFoldD) +@bprop_getters.register(Q.BatchNormFoldD) def get_bprop_BatchNormFold(self): """Generate bprop for BatchNormFold for Ascend""" - op = P.BatchNormFoldGradD(self.epsilon, self.is_training, self.freeze_bn) + op = Q.BatchNormFoldGradD(self.epsilon, self.is_training, self.freeze_bn) def bprop(x, x_sum, x_square_sum, mean, variance, out, dout): dx = op(dout[1], dout[2], x, out[1], out[2]) @@ -117,11 +118,11 @@ def get_bprop_BNTrainingReduce(self): return bprop -@bprop_getters.register(P.BatchNormFold2_D) +@bprop_getters.register(Q.BatchNormFold2_D) def get_bprop_batchnorm_fold2_(self): """Generate bprop for BatchNormFold2 for Ascend""" - op_reduce = P.BatchNormFold2GradReduce(freeze_bn=self.freeze_bn) - op_f = P.BatchNormFold2GradD(freeze_bn=self.freeze_bn) + op_reduce = Q.BatchNormFold2GradReduce(freeze_bn=self.freeze_bn) + op_f = Q.BatchNormFold2GradD(freeze_bn=self.freeze_bn) def bprop(x, beta, gamma, batch_std, batch_mean, running_std, out, dout): dout_reduce, dout_x_reduce = op_reduce(dout, x) @@ -132,7 +133,7 @@ def get_bprop_batchnorm_fold2_(self): return bprop -@bprop_getters.register(P.FakeQuantMinMaxPerLayerUpdate) +@bprop_getters.register(Q.FakeQuantMinMaxPerLayerUpdate) def get_bprop_fakequant_with_minmax_per_layer_update(self): """Generate bprop for FakeQuantMinMaxPerLayerUpdate for Ascend""" @@ -142,7 +143,7 @@ def get_bprop_fakequant_with_minmax_per_layer_update(self): return bprop -@bprop_getters.register(P.FakeQuantMinMaxPerChannelUpdate) +@bprop_getters.register(Q.FakeQuantMinMaxPerChannelUpdate) def get_bprop_fakequant_with_minmax_per_channel_update(self): """Generate bprop for FakeQuantMinMaxPerChannelUpdate for Ascend""" diff --git a/mindspore/ops/operations/__init__.py b/mindspore/ops/operations/__init__.py index 0cf41c173..f0ca60ad1 100644 --- a/mindspore/ops/operations/__init__.py +++ b/mindspore/ops/operations/__init__.py @@ -68,7 +68,6 @@ from .nn_ops import (LSTM, SGD, Adam, ApplyMomentum, BatchNorm, TopK, BinaryCrossEntropy, SparseApplyAdagrad, LARSUpdate, ApplyFtrl, ApplyRMSProp, ApplyCenteredRMSProp) from .other_ops import Assign, IOU, BoundingBoxDecode, BoundingBoxEncode, CheckValid, MakeRefKey, CheckBprop -from ._quant_ops import * from .thor_ops import * __all__ = [ diff --git a/mindspore/ops/operations/_quant_ops.py b/mindspore/ops/operations/_quant_ops.py index 05dcf53ef..852b3c638 100644 --- a/mindspore/ops/operations/_quant_ops.py +++ b/mindspore/ops/operations/_quant_ops.py @@ -70,7 +70,7 @@ class FakeQuantPerLayer(PrimitiveWithInfer): >>> input_tensor = Tensor(np.random.rand(3, 16, 5, 5), mstype.float32) >>> min_tensor = Tensor(np.array([-6]), mstype.float32) >>> max_tensor = Tensor(np.array([6]), mstype.float32) - >>> output_tensor = P.FakeQuantPerLayer(num_bits=8)(input_tensor, min_tensor, max_tensor) + >>> output_tensor = FakeQuantPerLayer(num_bits=8)(input_tensor, min_tensor, max_tensor) """ support_quant_bit = [4, 7, 8] @@ -130,7 +130,7 @@ class FakeQuantPerLayerGrad(PrimitiveWithInfer): Performs grad of FakeQuantPerLayerGrad operation. Examples: - >>> fake_min_max_grad = P.FakeQuantPerLayerGrad() + >>> fake_min_max_grad = FakeQuantPerLayerGrad() >>> dout = Tensor(np.array([[-2.3, 1.2], [5.7, 0.2]]), mindspore.float32) >>> input_x = Tensor(np.array([[18, -23], [0.2, 6]]), mindspore.float32) >>> _min = Tensor(np.array([-4]), mindspore.float32) @@ -207,7 +207,7 @@ class FakeQuantPerChannel(PrimitiveWithInfer): - Tensor, has the same type as input. Examples: - >>> fake_quant = P.FakeQuantPerChannel() + >>> fake_quant = FakeQuantPerChannel() >>> input_x = Tensor(np.array([3, 4, 5, -2, -3, -1]).reshape(3, 2), mindspore.float32) >>> _min = Tensor(np.linspace(-2, 2, 12).reshape(3, 2, 2), mindspore.float32) >>> _max = Tensor(np.linspace(8, 12, 12).reshape(3, 2, 2), mindspore.float32) @@ -276,7 +276,7 @@ class FakeQuantPerChannelGrad(PrimitiveWithInfer): Performs grad of FakeQuantPerChannelGrad operation. Examples: - >>> fqmmpc_grad = P.FakeQuantPerChannelGrad() + >>> fqmmpc_grad = FakeQuantPerChannelGrad() >>> input_x = Tensor(np.random.randint(-4, 4, (2, 3, 4)), mindspore.float32) >>> dout = Tensor(np.random.randint(-2, 2, (2, 3, 4)), mindspore.float32) >>> _min = Tensor(np.random.randint(-8, 2, (2, 3, 4)), mindspore.float32) @@ -885,7 +885,7 @@ class FakeQuantMinMaxPerLayerUpdate(PrimitiveWithInfer): >>> input_tensor = Tensor(np.random.rand(3, 16, 5, 5), mstype.float32) >>> min_tensor = Tensor(np.array([-6]), mstype.float32) >>> max_tensor = Tensor(np.array([6]), mstype.float32) - >>> output_tensor = P.FakeQuantWithMinMax(num_bits=8)(input_tensor, min_tensor, max_tensor) + >>> output_tensor = FakeQuantWithMinMax(num_bits=8)(input_tensor, min_tensor, max_tensor) """ support_quant_bit = [4, 7, 8] @@ -959,7 +959,7 @@ class FakeQuantMinMaxPerChannelUpdate(PrimitiveWithInfer): >>> x = Tensor(np.random.rand(3, 16, 5, 5), mstype.float32) >>> min = Tensor(np.random.uniform(-1, 1, size=16), mstype.float32) >>> max = Tensor(np.random.uniform(-1, 1, size=16), mstype.float32) - >>> output_tensor = P.FakeQuantWithMinMax(num_bits=8)(x, min, max) + >>> output_tensor = FakeQuantWithMinMax(num_bits=8)(x, min, max) """ support_quant_bit = [4, 7, 8] diff --git a/tests/st/ops/gpu/test_batchnorm_fold2_op.py b/tests/st/ops/gpu/test_batchnorm_fold2_op.py index eaaf10ef0..07ff2bfd7 100644 --- a/tests/st/ops/gpu/test_batchnorm_fold2_op.py +++ b/tests/st/ops/gpu/test_batchnorm_fold2_op.py @@ -21,6 +21,7 @@ import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function from mindspore.ops import operations as P +from mindspore.ops.operations import _quant_ops as Q context.set_context(device_target='GPU') @@ -28,7 +29,7 @@ context.set_context(device_target='GPU') class Net(nn.Cell): def __init__(self): super(Net, self).__init__() - self.op = P.BatchNormFold2(100000) + self.op = Q.BatchNormFold2(100000) @ms_function def construct(self, x, beta, gamma, batch_std, batch_mean, running_std, running_mean, current_step): diff --git a/tests/st/ops/gpu/test_batchnorm_fold_grad_op.py b/tests/st/ops/gpu/test_batchnorm_fold_grad_op.py index 8bf623371..8773719f1 100644 --- a/tests/st/ops/gpu/test_batchnorm_fold_grad_op.py +++ b/tests/st/ops/gpu/test_batchnorm_fold_grad_op.py @@ -20,7 +20,7 @@ import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function -from mindspore.ops import operations as P +from mindspore.ops.operations import _quant_ops as Q context.set_context(device_target='GPU') @@ -28,7 +28,7 @@ context.set_context(device_target='GPU') class Net(nn.Cell): def __init__(self): super(Net, self).__init__() - self.op = P.BatchNormFoldGrad(freeze_bn=10) + self.op = Q.BatchNormFoldGrad(freeze_bn=10) @ms_function def construct(self, d_batch_mean, d_batch_std, x, batch_mean, batch_std, current_step): diff --git a/tests/st/ops/gpu/test_batchnorm_fold_op.py b/tests/st/ops/gpu/test_batchnorm_fold_op.py index 09a8dcf28..dfae9d9ca 100644 --- a/tests/st/ops/gpu/test_batchnorm_fold_op.py +++ b/tests/st/ops/gpu/test_batchnorm_fold_op.py @@ -20,7 +20,7 @@ import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function -from mindspore.ops import operations as P +from mindspore.ops.operations import _quant_ops as Q context.set_context(device_target='GPU') @@ -28,7 +28,7 @@ context.set_context(device_target='GPU') class Net(nn.Cell): def __init__(self): super(Net, self).__init__() - self.op = P.BatchNormFold(momentum=0.9, freeze_bn=10) + self.op = Q.BatchNormFold(momentum=0.9, freeze_bn=10) @ms_function def construct(self, x, mean, variance, current_step): diff --git a/tests/st/ops/gpu/test_correction_mul_grad_op.py b/tests/st/ops/gpu/test_correction_mul_grad_op.py index 531e51ed2..a51d5b205 100644 --- a/tests/st/ops/gpu/test_correction_mul_grad_op.py +++ b/tests/st/ops/gpu/test_correction_mul_grad_op.py @@ -21,7 +21,7 @@ import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function -from mindspore.ops import operations as P +from mindspore.ops.operations import _quant_ops as Q context.set_context(device_target='GPU') @@ -29,7 +29,7 @@ context.set_context(device_target='GPU') class Net(nn.Cell): def __init__(self): super(Net, self).__init__() - self.op_w = P.CorrectionMulGrad() + self.op_w = Q.CorrectionMulGrad() @ms_function def construct(self, dy, x, batch_std, running_std): diff --git a/tests/st/ops/gpu/test_correction_mul_op.py b/tests/st/ops/gpu/test_correction_mul_op.py index 9a5ab6728..602047990 100644 --- a/tests/st/ops/gpu/test_correction_mul_op.py +++ b/tests/st/ops/gpu/test_correction_mul_op.py @@ -20,7 +20,7 @@ import mindspore.context as context import mindspore.nn as nn from mindspore import Tensor from mindspore.common.api import ms_function -from mindspore.ops import operations as P +from mindspore.ops.operations import _quant_ops as Q context.set_context(device_target='GPU') @@ -28,7 +28,7 @@ context.set_context(device_target='GPU') class Net(nn.Cell): def __init__(self): super(Net, self).__init__() - self.op = P.CorrectionMul() + self.op = Q.CorrectionMul() @ms_function def construct(self, x, batch_var, moving_var): -- GitLab