diff --git a/mindspore/ops/_grad/grad_math_ops.py b/mindspore/ops/_grad/grad_math_ops.py index 0a4cc04d51339f810b48a9d28247939ced7c5828..fdcda730c34366dbb17915eaf83cf8c4590623ca 100755 --- a/mindspore/ops/_grad/grad_math_ops.py +++ b/mindspore/ops/_grad/grad_math_ops.py @@ -1044,6 +1044,6 @@ def get_bprop_inv(self): inv_grad = G.InvGrad() def bprop(x, out, dout): - dx = inv_grad(x, dout) + dx = inv_grad(out, dout) return (dx,) return bprop diff --git a/mindspore/ops/operations/array_ops.py b/mindspore/ops/operations/array_ops.py index 0b44e83b2f3ef3b46e0046a4f6eb47bb6ddb9223..1dbbe3c42bb838964c46023afe8bd997f3a40b04 100644 --- a/mindspore/ops/operations/array_ops.py +++ b/mindspore/ops/operations/array_ops.py @@ -2649,7 +2649,7 @@ class BatchToSpaceND(PrimitiveWithInfer): The length of block_shape is M correspoding to the number of spatial dimensions. crops (list): The crop value for H and W dimension, containing 2 sub list, each containing 2 int value. All values must be >= 0. crops[i] specifies the crop values for spatial dimension i, which corresponds to - input dimension i+2. It is required that input_shape[i+2]*block_size[i] >= crops[i][0]+crops[i][1]. + input dimension i+2. It is required that input_shape[i+2]*block_size[i] > crops[i][0]+crops[i][1]. Inputs: - **input_x** (Tensor) - The input tensor. diff --git a/mindspore/ops/operations/other_ops.py b/mindspore/ops/operations/other_ops.py index c1f7ecee25a9e6662ff9240e6cd7883f6620f140..1f22c4caacfa4c3d259879c59dae7bc4e070faff 100644 --- a/mindspore/ops/operations/other_ops.py +++ b/mindspore/ops/operations/other_ops.py @@ -228,20 +228,20 @@ class IOU(PrimitiveWithInfer): Inputs: - **anchor_boxes** (Tensor) - Anchor boxes, tensor of shape (N, 4). "N" indicates the number of anchor boxes, - and the value "4" refers to "x0", "x1", "y0", and "y1". + and the value "4" refers to "x0", "x1", "y0", and "y1". Data type must be float16. - **gt_boxes** (Tensor) - Ground truth boxes, tensor of shape (M, 4). "M" indicates the number of ground - truth boxes, and the value "4" refers to "x0", "x1", "y0", and "y1". + truth boxes, and the value "4" refers to "x0", "x1", "y0", and "y1". Data type must be float16. Outputs: - Tensor, the 'iou' values, tensor of shape (M, N). + Tensor, the 'iou' values, tensor of shape (M, N), with data type float16. Raises: KeyError: When `mode` is not 'iou' or 'iof'. Examples: >>> iou = P.IOU() - >>> anchor_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float32) - >>> gt_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float32) + >>> anchor_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16) + >>> gt_boxes = Tensor(np.random.randint(1.0, 5.0, [3, 4]), mindspore.float16) >>> iou(anchor_boxes, gt_boxes) """