diff --git a/mindspore/lite/src/runtime/kernel/opencl/kernel/pooling2d.cc b/mindspore/lite/src/runtime/kernel/opencl/kernel/pooling2d.cc index fcee02ce9457a5cdcb00447f86470e2ad5b686d4..b647b1af4caddedf94365cb41c6a5c231b175089 100644 --- a/mindspore/lite/src/runtime/kernel/opencl/kernel/pooling2d.cc +++ b/mindspore/lite/src/runtime/kernel/opencl/kernel/pooling2d.cc @@ -112,7 +112,6 @@ int PoolingOpenCLKernel::Run() { MS_LOG(DEBUG) << this->name() << " Running!"; auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); - // attribute int slices = UP_DIV(out_tensors_[0]->Channel(), C4NUM); cl_int4 input_shape = {in_tensors_[0]->Height(), in_tensors_[0]->Width(), in_tensors_[0]->Channel(), slices}; cl_int4 output_shape = {out_tensors_[0]->Height(), out_tensors_[0]->Width(), out_tensors_[0]->Channel(), slices}; @@ -120,7 +119,6 @@ int PoolingOpenCLKernel::Run() { cl_int2 kernel_size = {parameter_->window_h_, parameter_->window_w_}; cl_int2 padding = {parameter_->pad_u_, parameter_->pad_l_}; - // binding parameters int arg_idx = 0; ocl_runtime->SetKernelArg(kernel_, arg_idx++, in_tensors_[0]->Data()); ocl_runtime->SetKernelArg(kernel_, arg_idx++, out_tensors_[0]->Data()); @@ -130,14 +128,12 @@ int PoolingOpenCLKernel::Run() { ocl_runtime->SetKernelArg(kernel_, arg_idx++, kernel_size); ocl_runtime->SetKernelArg(kernel_, arg_idx++, padding); - // set work group size std::vector<size_t> local_size; std::vector<size_t> global_size = InitGlobalSize(); int max_work_group_size = ocl_runtime->GetKernelMaxWorkGroupSize(kernel_(), (*ocl_runtime->Device())()); local_size = GetCommonLocalSize(global_size, max_work_group_size); global_size = GetCommonGlobalSize(local_size, global_size); - // run opengl kernel ocl_runtime->RunKernel(kernel_, global_size, local_size, nullptr); return RET_OK; } diff --git a/mindspore/lite/src/runtime/kernel/opencl/kernel/softmax.cc b/mindspore/lite/src/runtime/kernel/opencl/kernel/softmax.cc index 0f273371594304dfe2acfe3bd420a9da3a838b67..449e46a073f18ca01196e151100c845ae991bb74 100644 --- a/mindspore/lite/src/runtime/kernel/opencl/kernel/softmax.cc +++ b/mindspore/lite/src/runtime/kernel/opencl/kernel/softmax.cc @@ -162,10 +162,13 @@ kernel::LiteKernel *OpenCLSoftMaxKernelCreator(const std::vector<lite::tensor::T auto *kernel = new (std::nothrow) SoftmaxOpenCLKernel(reinterpret_cast<OpParameter *>(opParameter), inputs, outputs); if (kernel == nullptr) { MS_LOG(ERROR) << "kernel " << opParameter->name_ << "is nullptr."; + delete kernel; return nullptr; } if (inputs[0]->shape()[0] > 1) { MS_LOG(ERROR) << "Init `Softmax` kernel failed: Unsupported multi-batch."; + delete kernel; + return nullptr; } auto ret = kernel->Init(); if (0 != ret) { diff --git a/mindspore/lite/test/ut/src/runtime/kernel/opencl/avg_pooling_tests.cc b/mindspore/lite/test/ut/src/runtime/kernel/opencl/avg_pooling_tests.cc index 3fce02a8940c3604f2d13a4f1ba3d1d8fb82b21a..31567c318bfdb1698117d09a707b80145177bc1d 100644 --- a/mindspore/lite/test/ut/src/runtime/kernel/opencl/avg_pooling_tests.cc +++ b/mindspore/lite/test/ut/src/runtime/kernel/opencl/avg_pooling_tests.cc @@ -58,7 +58,7 @@ TEST_F(TestAvgPoolingOpenCL, AvgPoolFp32) { ocl_runtime->Init(); MS_LOG(INFO) << "create PoolingParameter"; - auto param = new PoolingParameter(); + auto param = new (std::nothrow) PoolingParameter(); InitAvgPoolingParam(param); MS_LOG(INFO) << "create Tensors"; @@ -76,18 +76,37 @@ TEST_F(TestAvgPoolingOpenCL, AvgPoolFp32) { }; auto data_type = kNumberTypeFloat32; auto tensorType = schema::NodeType_ValueNode; - lite::tensor::Tensor *tensor_in = new lite::tensor::Tensor(data_type, shape_in, schema::Format_NHWC, tensorType); - lite::tensor::Tensor *tensor_out = new lite::tensor::Tensor(data_type, shape_out, schema::Format_NHWC, tensorType); + lite::tensor::Tensor *tensor_in = + new (std::nothrow) lite::tensor::Tensor(data_type, shape_in, schema::Format_NHWC, tensorType); + lite::tensor::Tensor *tensor_out = + new (std::nothrow) lite::tensor::Tensor(data_type, shape_out, schema::Format_NHWC, tensorType); + if (tensor_in == nullptr) { + MS_LOG(ERROR) << "tensor_in null"; + return; + } + if (tensor_out == nullptr) { + MS_LOG(ERROR) << "tensor_out null"; + return; + } std::vector<lite::tensor::Tensor *> inputs{tensor_in}; std::vector<lite::tensor::Tensor *> outputs{tensor_out}; MS_LOG(INFO) << "create OpenCL Kernel"; - auto *pooling_kernel = new kernel::PoolingOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs); + auto *pooling_kernel = + new (std::nothrow) kernel::PoolingOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs); + if (pooling_kernel == nullptr) { + MS_LOG(ERROR) << "pooling_kernel null"; + return; + } pooling_kernel->Init(); std::vector<kernel::LiteKernel *> kernels{pooling_kernel}; MS_LOG(INFO) << "create SubGraphOpenCLKernel"; - auto *pGraph = new kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels); + auto *pGraph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels); + if (pGraph == nullptr) { + MS_LOG(ERROR) << "pGraph null"; + return; + } pGraph->Init(); MS_LOG(INFO) << "initialize data"; diff --git a/mindspore/lite/test/ut/src/runtime/kernel/opencl/max_pooling_tests.cc b/mindspore/lite/test/ut/src/runtime/kernel/opencl/max_pooling_tests.cc index 5e809c6a0cc5f88cdd17b735ef03f38c1c41c7c1..51991db429b5324effcf1a8fa9543bcf6cd33779 100644 --- a/mindspore/lite/test/ut/src/runtime/kernel/opencl/max_pooling_tests.cc +++ b/mindspore/lite/test/ut/src/runtime/kernel/opencl/max_pooling_tests.cc @@ -46,7 +46,7 @@ TEST_F(TestMaxPoolingOpenCL, MaxPool_1_32_512_96) { auto allocator = ocl_runtime->GetAllocator(); MS_LOG(INFO) << "PoolingParameter"; - auto param = new PoolingParameter; + auto param = new (std::nothrow) PoolingParameter; InitParameter(param); // define tensor @@ -56,21 +56,39 @@ TEST_F(TestMaxPoolingOpenCL, MaxPool_1_32_512_96) { auto data_type = kNumberTypeFloat32; auto tensorType = schema::NodeType_ValueNode; MS_LOG(INFO) << "define tensor2"; - auto input_tensor = new lite::tensor::Tensor(data_type, input_shape, schema::Format_NHWC4, tensorType); - auto output_tensor = new lite::tensor::Tensor(data_type, output_shape, schema::Format_NHWC4, tensorType); + auto input_tensor = new (std::nothrow) lite::tensor::Tensor(data_type, input_shape, schema::Format_NHWC4, tensorType); + auto output_tensor = + new (std::nothrow) lite::tensor::Tensor(data_type, output_shape, schema::Format_NHWC4, tensorType); + if (input_tensor == nullptr) { + MS_LOG(ERROR) << "input_tensor null"; + return; + } + if (output_tensor == nullptr) { + MS_LOG(ERROR) << "output_tensor null"; + return; + } MS_LOG(INFO) << "define input"; std::vector<lite::tensor::Tensor *> inputs{input_tensor}; std::vector<lite::tensor::Tensor *> outputs{output_tensor}; // run MS_LOG(INFO) << "pooling_kernel"; - auto *pooling_kernel = new kernel::PoolingOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs); + auto *pooling_kernel = + new (std::nothrow) kernel::PoolingOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs); + if (pooling_kernel == nullptr) { + MS_LOG(ERROR) << "pooling_kernel null"; + return; + } MS_LOG(INFO) << "pooling_kernel init"; pooling_kernel->Init(); std::vector<kernel::LiteKernel *> kernels{pooling_kernel}; inputs[0]->MallocData(allocator); - auto *pGraph = new kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels); + auto *pGraph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels); + if (pGraph == nullptr) { + MS_LOG(ERROR) << "pGraph null"; + return; + } MS_LOG(INFO) << "pGraph init"; pGraph->Init(); diff --git a/mindspore/lite/test/ut/src/runtime/kernel/opencl/softmax_tests.cc b/mindspore/lite/test/ut/src/runtime/kernel/opencl/softmax_tests.cc index 5ba3394d5b516781ebb2ad2ac724f5cc0a1cfa60..cae733ae053d6063f0e54a59578f26aa6e7b1dfc 100644 --- a/mindspore/lite/test/ut/src/runtime/kernel/opencl/softmax_tests.cc +++ b/mindspore/lite/test/ut/src/runtime/kernel/opencl/softmax_tests.cc @@ -28,41 +28,49 @@ class TestSoftmaxOpenCL : public mindspore::CommonTest {}; void RunTestCase(std::vector<int> input_shape, std::vector<int> output_shape, std::string input_file, std::string expect_file, SoftmaxParameter *param, schema::Format format) { - std::cout << "runtime" << std::endl; auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); ocl_runtime->Init(); auto allocator = ocl_runtime->GetAllocator(); // define tensor MS_LOG(INFO) << "defineTensor"; - std::cout << "defineTensor" << std::endl; - auto data_type = kNumberTypeFloat32; auto tensorType = schema::NodeType_ValueNode; - auto input_tensor = new lite::tensor::Tensor(data_type, input_shape, format, tensorType); - auto output_tensor = new lite::tensor::Tensor(data_type, output_shape, format, tensorType); + auto input_tensor = new (std::nothrow) lite::tensor::Tensor(data_type, input_shape, format, tensorType); + auto output_tensor = new (std::nothrow) lite::tensor::Tensor(data_type, output_shape, format, tensorType); + if (input_tensor == nullptr) { + MS_LOG(ERROR) << "input tensor null"; + return; + } + if (output_tensor == nullptr) { + MS_LOG(ERROR) << "output tensor null"; + return; + } std::vector<lite::tensor::Tensor *> inputs{input_tensor}; std::vector<lite::tensor::Tensor *> outputs{output_tensor}; // run MS_LOG(INFO) << "NewOpenCLKernel"; - std::cout << "NewOpenCLKernel" << std::endl; auto *kernel = new kernel::SoftmaxOpenCLKernel(reinterpret_cast<OpParameter *>(param), inputs, outputs); + if (kernel == nullptr) { + MS_LOG(ERROR) << "kernel null"; + return; + } MS_LOG(INFO) << "KernelInit"; - std::cout << "KernelInit" << std::endl; kernel->Init(); - std::cout << "LiteKernel" << std::endl; std::vector<kernel::LiteKernel *> kernels{kernel}; inputs[0]->MallocData(allocator); - std::cout << "SubGraphOpenCLKernel" << std::endl; - auto *pGraph = new kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels); + auto *pGraph = new (std::nothrow) kernel::SubGraphOpenCLKernel(inputs, outputs, kernels, kernels, kernels); + if (pGraph == nullptr) { + MS_LOG(ERROR) << "pGraph null"; + return; + } MS_LOG(INFO) << "pGraphinit"; pGraph->Init(); // load data MS_LOG(INFO) << "load data1"; - LoadTestData(input_tensor->Data(), input_tensor->Size(), input_file); auto *input_data = reinterpret_cast<float *>(input_tensor->Data()); printf("\ninput[0:10]:"); @@ -75,7 +83,6 @@ void RunTestCase(std::vector<int> input_shape, std::vector<int> output_shape, st pGraph->Run(); MS_LOG(INFO) << "compare result"; - std::cout << "compare result" << std::endl; CompareOutput(output_tensor, expect_file); } @@ -84,23 +91,11 @@ TEST_F(TestSoftmaxOpenCL, Softmax_1) { std::vector<int> output_shape = {1, 2, 2, 8}; std::string input_file = "softmax_in.bin"; std::string expect_file = "softmax_out.bin"; - auto param = new SoftmaxParameter; + auto param = new (std::nothrow) SoftmaxParameter; param->axis_ = 3; schema::Format format = schema::Format_NHWC4; RunTestCase(input_shape, output_shape, input_file, expect_file, param, format); } -// TEST_F(TestSoftmaxOpenCL, Softmax_1x1) { -// std::vector<int> input_shape = {1, 100}; -// std::vector<int> output_shape = {1, 100}; -// std::string input_file = "softmax1x1_in.bin"; -// std::string expect_file = "softmax1x1_out.bin"; -// auto param = new SoftmaxParameter; -// param->axis_ = 1; -// schema::Format format = schema::Format_NHWC4; -// -// RunTestCase(input_shape, output_shape, input_file, expect_file, param, format); -//} - } // namespace mindspore