Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
94f8cf67
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
94f8cf67
编写于
8月 07, 2020
作者:
Y
yangruoqi713
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[MS][LITE] add arm fp32 op: conv depthwise 3x3, add testcase for conv depthwise
上级
1f28a7c0
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
840 addition
and
2 deletion
+840
-2
mindspore/lite/src/runtime/kernel/arm/fp32/convolution_depthwise.cc
...lite/src/runtime/kernel/arm/fp32/convolution_depthwise.cc
+10
-1
mindspore/lite/src/runtime/kernel/arm/fp32/convolution_depthwise_3x3.cc
.../src/runtime/kernel/arm/fp32/convolution_depthwise_3x3.cc
+199
-0
mindspore/lite/src/runtime/kernel/arm/fp32/convolution_depthwise_3x3.h
...e/src/runtime/kernel/arm/fp32/convolution_depthwise_3x3.h
+61
-0
mindspore/lite/src/runtime/kernel/arm/nnacl/fp32/conv_depthwise.cc
.../lite/src/runtime/kernel/arm/nnacl/fp32/conv_depthwise.cc
+367
-0
mindspore/lite/src/runtime/kernel/arm/nnacl/fp32/conv_depthwise.h
...e/lite/src/runtime/kernel/arm/nnacl/fp32/conv_depthwise.h
+5
-1
mindspore/lite/test/ut/src/runtime/kernel/arm/fp32/convolution_depthwise_fp32_tests.cc
...ntime/kernel/arm/fp32/convolution_depthwise_fp32_tests.cc
+198
-0
未找到文件。
mindspore/lite/src/runtime/kernel/arm/fp32/convolution_depthwise.cc
浏览文件 @
94f8cf67
...
...
@@ -15,6 +15,7 @@
*/
#include "src/runtime/kernel/arm/fp32/convolution_depthwise.h"
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_3x3.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
...
...
@@ -182,7 +183,15 @@ kernel::LiteKernel *CpuConvDwFp32KernelCreator(const std::vector<lite::tensor::T
const
kernel
::
KernelKey
&
desc
)
{
MS_ASSERT
(
opParameter
!=
nullptr
);
MS_ASSERT
(
desc
.
type
==
schema
::
PrimitiveType_DepthwiseConv2D
);
auto
kernel
=
new
(
std
::
nothrow
)
kernel
::
ConvolutionDepthwiseCPUKernel
(
opParameter
,
inputs
,
outputs
,
ctx
);
kernel
::
LiteKernel
*
kernel
;
kernel
=
new
(
std
::
nothrow
)
kernel
::
ConvolutionDepthwiseCPUKernel
(
opParameter
,
inputs
,
outputs
,
ctx
);
// auto param = reinterpret_cast<ConvParameter *>(opParameter);
// if (param->kernel_h_ == 3 && param->kernel_w_ == 3 && param->stride_h_ == 1 && param->stride_w_ == 1 &&
// param->dilation_h_ == 1 && param->dilation_w_ == 1) {
// kernel = new (std::nothrow) kernel::ConvolutionDepthwise3x3CPUKernel(opParameter, inputs, outputs, ctx);
// } else {
// kernel = new (std::nothrow) kernel::ConvolutionDepthwiseCPUKernel(opParameter, inputs, outputs, ctx);
// }
if
(
kernel
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"kernel is nullptr."
;
return
nullptr
;
...
...
mindspore/lite/src/runtime/kernel/arm/fp32/convolution_depthwise_3x3.cc
0 → 100644
浏览文件 @
94f8cf67
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/fp32/convolution_depthwise_3x3.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "include/errorcode.h"
#include "src/runtime/runtime_api.h"
using
mindspore
::
kernel
::
KERNEL_ARCH
::
kCPU
;
using
mindspore
::
lite
::
KernelRegistrar
;
using
mindspore
::
lite
::
RET_ERROR
;
using
mindspore
::
lite
::
RET_OK
;
using
mindspore
::
schema
::
PrimitiveType_DepthwiseConv2D
;
namespace
mindspore
::
kernel
{
int
ConvolutionDepthwise3x3CPUKernel
::
InitWeightBias
()
{
// init weight: o, h, w, i; o == group, i == 1
auto
weight_tensor
=
inputs_
[
kWeightIndex
];
auto
origin_weight
=
reinterpret_cast
<
float
*>
(
weight_tensor
->
Data
());
// o h w 1 -> o/4 h w 1 4
int
OC4
=
UP_DIV
(
conv_param_
->
output_channel_
,
C4NUM
);
int
weight_c4_size
=
OC4
*
C4NUM
*
9
;
auto
tmp_weight
=
reinterpret_cast
<
float
*>
(
malloc
(
weight_c4_size
*
sizeof
(
float
)));
if
(
tmp_weight
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"Malloc buffer failed."
;
return
RET_ERROR
;
}
memset
(
tmp_weight
,
0
,
weight_c4_size
*
sizeof
(
float
));
PackNCHWToNC4HW4Fp32
(
origin_weight
,
tmp_weight
,
1
,
conv_param_
->
kernel_h_
*
conv_param_
->
kernel_w_
,
conv_param_
->
output_channel_
);
// weight transform
int
packed_weight_size
=
OC4
*
C4NUM
*
16
;
packed_weight_
=
reinterpret_cast
<
float
*>
(
malloc
(
packed_weight_size
*
sizeof
(
float
)));
if
(
packed_weight_
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"Malloc buffer failed."
;
return
RET_ERROR
;
}
memset
(
packed_weight_
,
0
,
packed_weight_size
*
sizeof
(
float
));
ConvDw3x3Fp32FilterTrans
(
packed_weight_
,
tmp_weight
,
OC4
);
// init bias
bias_data_
=
reinterpret_cast
<
float
*>
(
malloc
(
C4NUM
*
OC4
*
sizeof
(
float
)));
if
(
bias_data_
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"Malloc buffer failed."
;
return
RET_ERROR
;
}
memset
(
bias_data_
,
0
,
C4NUM
*
OC4
*
sizeof
(
float
));
if
(
inputs_
.
size
()
==
kInputSize2
)
{
auto
ori_bias
=
reinterpret_cast
<
float
*>
(
inputs_
.
at
(
kBiasIndex
)
->
Data
());
memcpy
(
bias_data_
,
ori_bias
,
conv_param_
->
output_channel_
*
sizeof
(
float
));
}
return
RET_OK
;
}
int
ConvolutionDepthwise3x3CPUKernel
::
InitBuffer
()
{
if
(
conv_param_
->
input_channel_
%
C4NUM
!=
0
)
{
need_align_
=
true
;
int
IC4
=
UP_DIV
(
conv_param_
->
input_channel_
,
C4NUM
);
int
pack_input_size
=
conv_param_
->
input_batch_
*
conv_param_
->
input_h_
*
conv_param_
->
input_w_
*
C4NUM
*
IC4
;
packed_input_
=
reinterpret_cast
<
float
*>
(
malloc
(
pack_input_size
*
sizeof
(
float
)));
if
(
packed_input_
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"Malloc buffer failed."
;
return
RET_ERROR
;
}
memset
(
packed_input_
,
0
,
pack_input_size
*
sizeof
(
float
));
int
OC4
=
UP_DIV
(
conv_param_
->
output_channel_
,
C4NUM
);
int
pack_output_size
=
conv_param_
->
output_batch_
*
conv_param_
->
output_h_
*
conv_param_
->
output_w_
*
C4NUM
*
OC4
;
packed_output_
=
reinterpret_cast
<
float
*>
(
malloc
(
pack_output_size
*
sizeof
(
float
)));
if
(
packed_output_
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"Malloc buffer failed."
;
return
RET_ERROR
;
}
}
// malloc transform buffer
trans_size_
=
UP_DIV
(
conv_param_
->
output_w_
,
2
)
*
UP_DIV
(
conv_param_
->
output_h_
,
2
)
*
16
*
C4NUM
;
size_t
trans_buffer_size
=
thread_count_
*
trans_size_
*
sizeof
(
float
);
trans_buffer_
=
reinterpret_cast
<
float
*>
(
malloc
(
trans_buffer_size
));
if
(
trans_buffer_
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"malloc trans buffer failed."
;
return
RET_ERROR
;
}
return
RET_OK
;
}
int
ConvolutionDepthwise3x3CPUKernel
::
Init
()
{
// conv base init
ConvolutionBaseCPUKernel
::
Init
();
auto
ret
=
InitWeightBias
();
if
(
ret
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"Depthwise3x3 fp32 initWeightBias error!"
;
return
ret
;
}
// init threadNum;
conv_param_
->
thread_num_
=
MSMIN
(
thread_count_
,
UP_DIV
(
conv_param_
->
output_channel_
,
C4NUM
));
ret
=
InitBuffer
();
if
(
ret
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"Depthwise3x3 fp32 initBuffer error!"
;
return
ret
;
}
// malloc one block buffer
block_buffer_
=
reinterpret_cast
<
float
*>
(
malloc
(
thread_count_
*
16
*
C4NUM
*
sizeof
(
float
)));
if
(
block_buffer_
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"malloc block buffer failed."
;
return
RET_ERROR
;
}
return
RET_OK
;
}
int
ConvolutionDepthwise3x3CPUKernel
::
ReSize
()
{
if
(
need_align_
)
{
free
(
packed_input_
);
free
(
packed_output_
);
}
free
(
trans_buffer_
);
// conv base init
ConvolutionBaseCPUKernel
::
Init
();
auto
ret
=
InitBuffer
();
if
(
ret
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"Depthwise3x3 fp32 initBuffer error!"
;
return
ret
;
}
return
RET_OK
;
}
int
ConvolutionDepthwise3x3CPUKernel
::
Execute
(
int
task_id
)
{
auto
trans_buf
=
trans_buffer_
+
task_id
*
trans_size_
;
auto
block_buf
=
block_buffer_
+
task_id
*
16
*
C4NUM
;
ConvDw3x3Fp32
(
packed_output_
,
packed_input_
,
packed_weight_
,
reinterpret_cast
<
float
*>
(
bias_data_
),
trans_buf
,
block_buf
,
conv_param_
,
task_id
);
return
RET_OK
;
}
int
ConvDw3x3Run
(
int
task_id
,
LiteParallelGroupEnv
*
penv
,
void
*
cdata
)
{
auto
conv_dw_3x3
=
reinterpret_cast
<
ConvolutionDepthwise3x3CPUKernel
*>
(
cdata
);
auto
ret
=
conv_dw_3x3
->
Execute
(
task_id
);
if
(
ret
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"ConvolutionDepthwise3x3Run error task_id["
<<
task_id
<<
"] error_code["
<<
ret
<<
"]"
;
return
RET_ERROR
;
}
return
RET_OK
;
}
int
ConvolutionDepthwise3x3CPUKernel
::
Run
()
{
if
(
conv_param_
->
input_channel_
!=
conv_param_
->
output_channel_
)
{
MS_LOG
(
ERROR
)
<<
"Only support input channel equals output channel."
;
return
RET_ERROR
;
}
auto
input_tensor
=
inputs_
.
at
(
kInputIndex
);
auto
input_addr
=
reinterpret_cast
<
float
*>
(
input_tensor
->
Data
());
// pack input: to nhwc4
if
(
need_align_
)
{
PackNHWCToNHWC4Fp32
(
input_addr
,
packed_input_
,
conv_param_
->
input_batch_
,
conv_param_
->
input_h_
*
conv_param_
->
input_w_
,
conv_param_
->
input_channel_
);
}
else
{
packed_input_
=
input_addr
;
}
auto
output_addr
=
reinterpret_cast
<
float
*>
(
outputs_
.
at
(
kOutputIndex
)
->
Data
());
if
(
!
need_align_
)
{
packed_output_
=
output_addr
;
}
auto
ret
=
LiteBackendParallelLaunch
(
ConvDw3x3Run
,
this
,
conv_param_
->
thread_num_
);
if
(
ret
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"ConvDw3x3Run error: error_code["
<<
ret
<<
"]"
;
return
RET_ERROR
;
}
if
(
need_align_
)
{
PackNHWC4ToNHWCFp32
(
packed_output_
,
output_addr
,
conv_param_
->
output_batch_
,
conv_param_
->
output_h_
*
conv_param_
->
output_w_
,
conv_param_
->
output_channel_
);
}
return
RET_OK
;
}
}
// namespace mindspore::kernel
mindspore/lite/src/runtime/kernel/arm/fp32/convolution_depthwise_3x3.h
0 → 100644
浏览文件 @
94f8cf67
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_BACKEND_ARM_FP32_CONVOLUTION_DEPTHWISE_3X3_H_
#define MINDSPORE_LITE_SRC_BACKEND_ARM_FP32_CONVOLUTION_DEPTHWISE_3X3_H_
#include <vector>
#include "src/lite_kernel.h"
#include "src/runtime/kernel/arm/base/convolution_base.h"
#include "src/runtime/kernel/arm/nnacl/fp32/conv_depthwise.h"
namespace
mindspore
::
kernel
{
class
ConvolutionDepthwise3x3CPUKernel
:
public
ConvolutionBaseCPUKernel
{
public:
ConvolutionDepthwise3x3CPUKernel
(
OpParameter
*
parameter
,
const
std
::
vector
<
lite
::
tensor
::
Tensor
*>
&
inputs
,
const
std
::
vector
<
lite
::
tensor
::
Tensor
*>
&
outputs
,
const
Context
*
ctx
)
:
ConvolutionBaseCPUKernel
(
parameter
,
inputs
,
outputs
,
ctx
)
{}
~
ConvolutionDepthwise3x3CPUKernel
()
override
{
free
(
packed_weight_
);
if
(
need_align_
)
{
free
(
packed_input_
);
free
(
packed_output_
);
}
free
(
block_buffer_
);
free
(
trans_buffer_
);
};
int
Init
()
override
;
int
ReSize
()
override
;
int
Run
()
override
;
int
InitWeightBias
();
int
InitBuffer
();
int
Execute
(
int
task_id
);
private:
float
*
packed_weight_
;
float
*
packed_input_
;
float
*
packed_output_
;
float
*
block_buffer_
;
float
*
trans_buffer_
;
int
trans_size_
;
bool
need_align_
=
false
;
};
}
// namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_BACKEND_ARM_FP32_CONVOLUTION_DEPTHWISE_3X3_H_
mindspore/lite/src/runtime/kernel/arm/nnacl/fp32/conv_depthwise.cc
浏览文件 @
94f8cf67
...
...
@@ -16,6 +16,7 @@
#include "src/runtime/kernel/arm/nnacl/fp32/conv_depthwise.h"
#include "src/runtime/kernel/arm/nnacl/fp32/common_func.h"
#include "src/runtime/kernel/arm/nnacl/winograd_transform.h"
#ifdef ENABLE_ARM64
#include <arm_neon.h>
#endif
...
...
@@ -212,6 +213,372 @@ void ConvDwC4Fp32(float *output_data, const float *input_data, const float *weig
}
/*conv depthwise fp32 end*/
/*conv depthwise 3x3 fp32 begin*/
void
ConvDw3x3Fp32FilterTrans
(
float
*
trans_weight
,
float
*
weight
,
int
oc4
)
{
for
(
int
c
=
0
;
c
<
oc4
;
c
++
)
{
float
*
src
=
weight
+
c
*
C4NUM
*
9
;
float
*
dst
=
trans_weight
+
c
*
C4NUM
*
16
;
#ifdef ENABLE_ARM
float32x4_t
g00
=
vld1q_f32
(
src
);
float32x4_t
g01
=
vld1q_f32
(
src
+
4
);
float32x4_t
g02
=
vld1q_f32
(
src
+
2
*
4
);
float32x4_t
g10
=
vld1q_f32
(
src
+
3
*
4
);
float32x4_t
g11
=
vld1q_f32
(
src
+
4
*
4
);
float32x4_t
g12
=
vld1q_f32
(
src
+
5
*
4
);
float32x4_t
g20
=
vld1q_f32
(
src
+
6
*
4
);
float32x4_t
g21
=
vld1q_f32
(
src
+
7
*
4
);
float32x4_t
g22
=
vld1q_f32
(
src
+
8
*
4
);
float32x4_t
dst00
=
g00
;
float32x4_t
dst01
=
g01
;
float32x4_t
dst02
=
g02
;
float32x4_t
dst10
=
vaddq_f32
(
vmulq_n_f32
(
g00
,
0.5
),
vmulq_n_f32
(
g10
,
0.5
));
dst10
=
vaddq_f32
(
dst10
,
vmulq_n_f32
(
g20
,
0.5
));
float32x4_t
dst11
=
vaddq_f32
(
vmulq_n_f32
(
g01
,
0.5
),
vmulq_n_f32
(
g11
,
0.5
));
dst11
=
vaddq_f32
(
dst11
,
vmulq_n_f32
(
g21
,
0.5
));
float32x4_t
dst12
=
vaddq_f32
(
vmulq_n_f32
(
g02
,
0.5
),
vmulq_n_f32
(
g12
,
0.5
));
dst12
=
vaddq_f32
(
dst12
,
vmulq_n_f32
(
g22
,
0.5
));
float32x4_t
dst20
=
vsubq_f32
(
vmulq_n_f32
(
g00
,
0.5
),
vmulq_n_f32
(
g10
,
0.5
));
dst20
=
vaddq_f32
(
dst20
,
vmulq_n_f32
(
g20
,
0.5
));
float32x4_t
dst21
=
vsubq_f32
(
vmulq_n_f32
(
g01
,
0.5
),
vmulq_n_f32
(
g11
,
0.5
));
dst21
=
vaddq_f32
(
dst21
,
vmulq_n_f32
(
g21
,
0.5
));
float32x4_t
dst22
=
vsubq_f32
(
vmulq_n_f32
(
g02
,
0.5
),
vmulq_n_f32
(
g12
,
0.5
));
dst22
=
vaddq_f32
(
dst22
,
vmulq_n_f32
(
g22
,
0.5
));
float32x4_t
dst30
=
g20
;
float32x4_t
dst31
=
g21
;
float32x4_t
dst32
=
g22
;
float32x4_t
m00
=
dst00
;
float32x4_t
m01
=
vaddq_f32
(
vmulq_n_f32
(
dst00
,
0.5
),
vmulq_n_f32
(
dst01
,
0.5
));
m01
=
vaddq_f32
(
m01
,
vmulq_n_f32
(
dst02
,
0.5
));
float32x4_t
m02
=
vsubq_f32
(
vmulq_n_f32
(
dst00
,
0.5
),
vmulq_n_f32
(
dst01
,
0.5
));
m02
=
vaddq_f32
(
m02
,
vmulq_n_f32
(
dst02
,
0.5
));
float32x4_t
m03
=
dst02
;
float32x4_t
m10
=
dst10
;
float32x4_t
m11
=
vaddq_f32
(
vmulq_n_f32
(
dst10
,
0.5
),
vmulq_n_f32
(
dst11
,
0.5
));
m11
=
vaddq_f32
(
m11
,
vmulq_n_f32
(
dst12
,
0.5
));
float32x4_t
m12
=
vsubq_f32
(
vmulq_n_f32
(
dst10
,
0.5
),
vmulq_n_f32
(
dst11
,
0.5
));
m12
=
vaddq_f32
(
m12
,
vmulq_n_f32
(
dst12
,
0.5
));
float32x4_t
m13
=
dst12
;
float32x4_t
m20
=
dst20
;
float32x4_t
m21
=
vaddq_f32
(
vmulq_n_f32
(
dst20
,
0.5
),
vmulq_n_f32
(
dst21
,
0.5
));
m21
=
vaddq_f32
(
m21
,
vmulq_n_f32
(
dst22
,
0.5
));
float32x4_t
m22
=
vsubq_f32
(
vmulq_n_f32
(
dst20
,
0.5
),
vmulq_n_f32
(
dst21
,
0.5
));
m22
=
vaddq_f32
(
m22
,
vmulq_n_f32
(
dst22
,
0.5
));
float32x4_t
m23
=
dst22
;
float32x4_t
m30
=
dst30
;
float32x4_t
m31
=
vaddq_f32
(
vmulq_n_f32
(
dst30
,
0.5
),
vmulq_n_f32
(
dst31
,
0.5
));
m31
=
vaddq_f32
(
m31
,
vmulq_n_f32
(
dst32
,
0.5
));
float32x4_t
m32
=
vsubq_f32
(
vmulq_n_f32
(
dst30
,
0.5
),
vmulq_n_f32
(
dst31
,
0.5
));
m32
=
vaddq_f32
(
m32
,
vmulq_n_f32
(
dst32
,
0.5
));
float32x4_t
m33
=
dst32
;
vst1q_f32
(
dst
,
m00
);
vst1q_f32
(
dst
+
4
,
m01
);
vst1q_f32
(
dst
+
8
,
m02
);
vst1q_f32
(
dst
+
12
,
m03
);
vst1q_f32
(
dst
+
16
,
m10
);
vst1q_f32
(
dst
+
20
,
m11
);
vst1q_f32
(
dst
+
24
,
m12
);
vst1q_f32
(
dst
+
28
,
m13
);
vst1q_f32
(
dst
+
32
,
m20
);
vst1q_f32
(
dst
+
36
,
m21
);
vst1q_f32
(
dst
+
40
,
m22
);
vst1q_f32
(
dst
+
44
,
m23
);
vst1q_f32
(
dst
+
48
,
m30
);
vst1q_f32
(
dst
+
52
,
m31
);
vst1q_f32
(
dst
+
56
,
m32
);
vst1q_f32
(
dst
+
60
,
m33
);
#else
for
(
int
j
=
0
;
j
<
C4NUM
;
j
++
)
{
float
*
local_ptr
=
src
+
j
;
float
dst00
=
local_ptr
[
0
];
float
dst01
=
(
local_ptr
+
4
)[
0
];
float
dst02
=
(
local_ptr
+
8
)[
0
];
float
dst10
=
0.5
f
*
local_ptr
[
0
]
+
0.5
f
*
(
local_ptr
+
12
)[
0
]
+
0.5
f
*
(
local_ptr
+
24
)[
0
];
float
dst11
=
0.5
f
*
(
local_ptr
+
4
)[
0
]
+
0.5
f
*
(
local_ptr
+
16
)[
0
]
+
0.5
f
*
(
local_ptr
+
28
)[
0
];
float
dst12
=
0.5
f
*
(
local_ptr
+
8
)[
0
]
+
0.5
f
*
(
local_ptr
+
20
)[
0
]
+
0.5
f
*
(
local_ptr
+
32
)[
0
];
float
dst20
=
0.5
f
*
local_ptr
[
0
]
-
0.5
f
*
(
local_ptr
+
12
)[
0
]
+
0.5
f
*
(
local_ptr
+
24
)[
0
];
float
dst21
=
0.5
f
*
(
local_ptr
+
4
)[
0
]
-
0.5
f
*
(
local_ptr
+
16
)[
0
]
+
0.5
f
*
(
local_ptr
+
28
)[
0
];
float
dst22
=
0.5
f
*
(
local_ptr
+
8
)[
0
]
-
0.5
f
*
(
local_ptr
+
20
)[
0
]
+
0.5
f
*
(
local_ptr
+
32
)[
0
];
float
dst30
=
(
local_ptr
+
24
)[
0
];
float
dst31
=
(
local_ptr
+
28
)[
0
];
float
dst32
=
(
local_ptr
+
32
)[
0
];
float
m00
=
dst00
;
float
m01
=
0.5
f
*
dst00
+
0.5
f
*
dst01
+
0.5
f
*
dst02
;
float
m02
=
0.5
f
*
dst00
-
0.5
f
*
dst01
+
0.5
f
*
dst02
;
float
m03
=
dst02
;
float
m10
=
dst10
;
float
m11
=
0.5
f
*
dst10
+
0.5
f
*
dst11
+
0.5
f
*
dst12
;
float
m12
=
0.5
f
*
dst10
-
0.5
f
*
dst11
+
0.5
f
*
dst12
;
float
m13
=
dst12
;
float
m20
=
dst20
;
float
m21
=
0.5
f
*
dst20
+
0.5
f
*
dst21
+
0.5
f
*
dst22
;
float
m22
=
0.5
f
*
dst20
-
0.5
f
*
dst21
+
0.5
f
*
dst22
;
float
m23
=
dst22
;
float
m30
=
dst30
;
float
m31
=
0.5
f
*
dst30
+
0.5
f
*
dst31
+
0.5
f
*
dst32
;
float
m32
=
0.5
f
*
dst30
-
0.5
f
*
dst31
+
0.5
f
*
dst32
;
float
m33
=
dst32
;
*
(
dst
+
j
)
=
m00
;
*
(
dst
+
j
+
4
)
=
m01
;
*
(
dst
+
j
+
8
)
=
m02
;
*
(
dst
+
j
+
12
)
=
m03
;
*
(
dst
+
j
+
16
)
=
m10
;
*
(
dst
+
j
+
20
)
=
m11
;
*
(
dst
+
j
+
24
)
=
m12
;
*
(
dst
+
j
+
28
)
=
m13
;
*
(
dst
+
j
+
32
)
=
m20
;
*
(
dst
+
j
+
36
)
=
m21
;
*
(
dst
+
j
+
40
)
=
m22
;
*
(
dst
+
j
+
44
)
=
m23
;
*
(
dst
+
j
+
48
)
=
m30
;
*
(
dst
+
j
+
52
)
=
m31
;
*
(
dst
+
j
+
56
)
=
m32
;
*
(
dst
+
j
+
60
)
=
m33
;
}
#endif
}
}
void
ConvDw3x3Fp32InputTrans
(
const
float
*
input_data
,
float
*
trans_input
,
float
*
block_buffer
,
int
out_h_block
,
int
out_w_block
,
const
ConvParameter
*
conv_param
)
{
int
ic4
=
UP_DIV
(
conv_param
->
input_channel_
,
C4NUM
);
int
input_unit
=
4
;
memset
(
trans_input
,
0
,
out_h_block
*
out_h_block
*
16
*
C4NUM
*
sizeof
(
float
));
for
(
int
oh
=
0
;
oh
<
out_h_block
;
oh
++
)
{
int
ih
=
oh
*
2
-
conv_param
->
pad_h_
;
int
real_h_start
=
ih
>
0
?
0
:
-
ih
;
int
real_h_end
=
(
ih
+
input_unit
)
<
conv_param
->
input_h_
?
input_unit
:
(
conv_param
->
input_h_
-
ih
);
for
(
int
ow
=
0
;
ow
<
out_w_block
;
ow
++
)
{
int
iw
=
ow
*
2
-
conv_param
->
pad_w_
;
int
real_w_start
=
iw
>
0
?
0
:
-
iw
;
int
real_w_end
=
(
iw
+
input_unit
)
<
conv_param
->
input_w_
?
input_unit
:
(
conv_param
->
input_w_
-
iw
);
memset
(
block_buffer
,
0
,
16
*
C4NUM
*
sizeof
(
float
));
int
src_plane_offset
=
ic4
*
C4NUM
*
(
ih
*
conv_param
->
input_w_
+
iw
);
for
(
int
h
=
real_h_start
;
h
<
real_h_end
;
h
++
)
{
int
src_h_offset
=
src_plane_offset
+
(
h
*
conv_param
->
input_w_
)
*
ic4
*
C4NUM
;
int
dst_h_offset
=
(
h
*
input_unit
)
*
C4NUM
;
for
(
int
w
=
real_w_start
;
w
<
real_w_end
;
w
++
)
{
int
src_w_offset
=
src_h_offset
+
w
*
ic4
*
C4NUM
;
int
dst_w_offset
=
dst_h_offset
+
w
*
C4NUM
;
float
*
src_addr
=
(
float
*
)(
input_data
)
+
src_w_offset
;
float
*
dst_addr
=
block_buffer
+
dst_w_offset
;
#ifdef ENABLE_NEON
vst1q_f32
(
dst_addr
,
vld1q_f32
(
src_addr
));
#else
for
(
int
k
=
0
;
k
<
C4NUM
;
k
++
)
{
(
dst_addr
+
k
)[
0
]
=
(
src_addr
+
k
)[
0
];
}
#endif
}
}
int
trans_offset
=
(
oh
*
out_w_block
+
ow
)
*
16
*
C4NUM
;
Conv3x3Fp32InputUnit
(
block_buffer
,
trans_input
+
trans_offset
,
C4NUM
);
}
}
}
// todo yangruoqi: implement assembly
void
ConvDw3x3Fp32Winograd
(
float
*
trans_buffer
,
const
float
*
weight
,
int
out_h_block
,
int
out_w_block
)
{
int
unit
=
4
;
for
(
int
oh
=
0
;
oh
<
out_h_block
;
oh
++
)
{
float
*
buf_oh
=
trans_buffer
+
oh
*
out_w_block
*
16
*
C4NUM
;
for
(
int
ow
=
0
;
ow
<
out_w_block
;
ow
++
)
{
float
*
buf_ow
=
buf_oh
+
ow
*
16
*
C4NUM
;
for
(
int
kh
=
0
;
kh
<
unit
;
kh
++
)
{
float
*
buf_kh
=
buf_ow
+
kh
*
unit
*
C4NUM
;
const
float
*
weight_kh
=
weight
+
kh
*
unit
*
C4NUM
;
for
(
int
kw
=
0
;
kw
<
unit
;
kw
++
)
{
float
*
buf_kw
=
buf_kh
+
kw
*
C4NUM
;
const
float
*
weight_kw
=
weight_kh
+
kw
*
C4NUM
;
for
(
int
c
=
0
;
c
<
C4NUM
;
c
++
)
{
buf_kw
[
c
]
=
buf_kw
[
c
]
*
weight_kw
[
c
];
}
}
}
}
}
}
void
ConvDw3x3Fp32OutputUnit
(
float
*
src_buf
,
float
*
dst_output
,
const
float
*
bias
,
int
channel
,
int
output_w
,
bool
h_in_range
,
bool
w_in_range
,
bool
is_relu
,
bool
is_relu6
)
{
#ifdef ENABLE_ARM
float32x4_t
bias_ptr
=
vld1q_f32
(
bias
);
float32x4_t
s00
=
vld1q_f32
(
src_buf
);
float32x4_t
s01
=
vld1q_f32
(
src_buf
+
4
);
float32x4_t
s02
=
vld1q_f32
(
src_buf
+
8
);
float32x4_t
s03
=
vld1q_f32
(
src_buf
+
12
);
float32x4_t
s10
=
vld1q_f32
(
src_buf
+
16
);
float32x4_t
s11
=
vld1q_f32
(
src_buf
+
20
);
float32x4_t
s12
=
vld1q_f32
(
src_buf
+
24
);
float32x4_t
s13
=
vld1q_f32
(
src_buf
+
28
);
float32x4_t
s20
=
vld1q_f32
(
src_buf
+
32
);
float32x4_t
s21
=
vld1q_f32
(
src_buf
+
36
);
float32x4_t
s22
=
vld1q_f32
(
src_buf
+
40
);
float32x4_t
s23
=
vld1q_f32
(
src_buf
+
44
);
float32x4_t
s30
=
vld1q_f32
(
src_buf
+
48
);
float32x4_t
s31
=
vld1q_f32
(
src_buf
+
52
);
float32x4_t
s32
=
vld1q_f32
(
src_buf
+
56
);
float32x4_t
s33
=
vld1q_f32
(
src_buf
+
60
);
float32x4_t
t00
=
vaddq_f32
(
vaddq_f32
(
s00
,
s10
),
s20
);
float32x4_t
t01
=
vaddq_f32
(
vaddq_f32
(
s01
,
s11
),
s21
);
float32x4_t
t02
=
vaddq_f32
(
vaddq_f32
(
s02
,
s12
),
s22
);
float32x4_t
t03
=
vaddq_f32
(
vaddq_f32
(
s03
,
s13
),
s23
);
float32x4_t
t10
=
vsubq_f32
(
vsubq_f32
(
s10
,
s20
),
s30
);
float32x4_t
t11
=
vsubq_f32
(
vsubq_f32
(
s11
,
s21
),
s31
);
float32x4_t
t12
=
vsubq_f32
(
vsubq_f32
(
s12
,
s22
),
s32
);
float32x4_t
t13
=
vsubq_f32
(
vsubq_f32
(
s13
,
s23
),
s33
);
float32x4_t
d00
=
vaddq_f32
(
vaddq_f32
(
vaddq_f32
(
t00
,
t01
),
t02
),
bias_ptr
);
float32x4_t
d01
=
vaddq_f32
(
vsubq_f32
(
vsubq_f32
(
t01
,
t02
),
t03
),
bias_ptr
);
float32x4_t
d10
=
vaddq_f32
(
vaddq_f32
(
vaddq_f32
(
t10
,
t11
),
t12
),
bias_ptr
);
float32x4_t
d11
=
vaddq_f32
(
vsubq_f32
(
vsubq_f32
(
t11
,
t12
),
t13
),
bias_ptr
);
vst1q_f32
(
dst_output
,
d00
);
if
(
w_in_range
)
{
vst1q_f32
(
dst_output
+
channel
,
d01
);
}
if
(
h_in_range
)
{
vst1q_f32
(
dst_output
+
output_w
*
channel
,
d10
);
if
(
w_in_range
)
{
vst1q_f32
(
dst_output
+
output_w
*
channel
+
channel
,
d11
);
}
}
#else
for
(
int
i
=
0
;
i
<
C4NUM
;
i
++
)
{
const
float
*
local_ptr
=
src_buf
+
i
;
const
float
*
bias_ptr
=
bias
+
i
;
float
s00
=
local_ptr
[
0
];
float
s01
=
(
local_ptr
+
4
)[
0
];
float
s02
=
(
local_ptr
+
8
)[
0
];
float
s03
=
(
local_ptr
+
12
)[
0
];
float
s10
=
(
local_ptr
+
16
)[
0
];
float
s11
=
(
local_ptr
+
20
)[
0
];
float
s12
=
(
local_ptr
+
24
)[
0
];
float
s13
=
(
local_ptr
+
28
)[
0
];
float
s20
=
(
local_ptr
+
32
)[
0
];
float
s21
=
(
local_ptr
+
36
)[
0
];
float
s22
=
(
local_ptr
+
40
)[
0
];
float
s23
=
(
local_ptr
+
44
)[
0
];
float
s30
=
(
local_ptr
+
48
)[
0
];
float
s31
=
(
local_ptr
+
52
)[
0
];
float
s32
=
(
local_ptr
+
56
)[
0
];
float
s33
=
(
local_ptr
+
60
)[
0
];
float
t00
=
s00
+
s10
+
s20
;
float
t01
=
s01
+
s11
+
s21
;
float
t02
=
s02
+
s12
+
s22
;
float
t03
=
s03
+
s13
+
s23
;
float
t10
=
s10
-
s20
-
s30
;
float
t11
=
s11
-
s21
-
s31
;
float
t12
=
s12
-
s22
-
s32
;
float
t13
=
s13
-
s23
-
s33
;
float
d00
=
t00
+
t01
+
t02
+
bias_ptr
[
0
];
float
d01
=
t01
-
t02
-
t03
+
bias_ptr
[
0
];
float
d10
=
t10
+
t11
+
t12
+
bias_ptr
[
0
];
float
d11
=
t11
-
t12
-
t13
+
bias_ptr
[
0
];
(
dst_output
+
i
)[
0
]
=
d00
;
if
(
w_in_range
)
{
(
dst_output
+
i
+
channel
)[
0
]
=
d01
;
}
if
(
h_in_range
)
{
(
dst_output
+
i
+
output_w
*
channel
)[
0
]
=
d10
;
if
(
w_in_range
)
{
(
dst_output
+
i
+
output_w
*
channel
+
channel
)[
0
]
=
d11
;
}
}
}
#endif
}
void
ConvDw3x3Fp32OutputTrans
(
float
*
trans_buffer
,
float
*
output_data
,
const
float
*
bias
,
int
out_h_block
,
int
out_w_block
,
const
ConvParameter
*
conv_param
)
{
int
oc4
=
UP_DIV
(
conv_param
->
output_channel_
,
C4NUM
);
bool
h_in_range
=
true
;
for
(
int
oh
=
0
;
oh
<
out_h_block
;
oh
++
)
{
int
real_oh
=
2
*
oh
;
if
((
oh
+
1
)
*
2
>
conv_param
->
output_h_
)
{
h_in_range
=
false
;
}
bool
w_in_range
=
true
;
float
*
buf_oh
=
trans_buffer
+
oh
*
out_w_block
*
16
*
C4NUM
;
float
*
output_oh
=
output_data
+
real_oh
*
conv_param
->
output_w_
*
oc4
*
C4NUM
;
for
(
int
ow
=
0
;
ow
<
out_w_block
;
ow
++
)
{
int
real_ow
=
2
*
ow
;
if
((
ow
+
1
)
*
2
>
conv_param
->
output_w_
)
{
w_in_range
=
false
;
}
float
*
buf_ow
=
buf_oh
+
ow
*
16
*
C4NUM
;
float
*
output_ow
=
output_oh
+
real_ow
*
oc4
*
C4NUM
;
ConvDw3x3Fp32OutputUnit
(
buf_ow
,
output_ow
,
bias
,
oc4
*
C4NUM
,
conv_param
->
output_w_
,
h_in_range
,
w_in_range
,
conv_param
->
is_relu_
,
conv_param
->
is_relu6_
);
}
}
}
void
ConvDw3x3Fp32
(
float
*
output_data
,
const
float
*
input_data
,
const
float
*
weight_data
,
const
float
*
bias_data
,
float
*
trans_buffer
,
float
*
block_buffer
,
const
ConvParameter
*
conv_param
,
int
task_id
)
{
int
thread_count
=
conv_param
->
thread_num_
;
int
output_channel
=
conv_param
->
output_channel_
;
int
oc4
=
UP_DIV
(
output_channel
,
C4NUM
);
int
out_h_block
=
UP_DIV
(
conv_param
->
output_h_
,
2
);
int
out_w_block
=
UP_DIV
(
conv_param
->
output_w_
,
2
);
int
input_batch
=
conv_param
->
input_batch_
;
for
(
int
batch
=
0
;
batch
<
input_batch
;
batch
++
)
{
const
float
*
input
=
input_data
+
batch
*
conv_param
->
input_h_
*
conv_param
->
input_w_
*
UP_DIV
(
conv_param
->
input_channel_
,
C4NUM
)
*
C4NUM
;
float
*
output
=
output_data
+
batch
*
conv_param
->
output_h_
*
conv_param
->
output_w_
*
UP_DIV
(
conv_param
->
output_channel_
,
C4NUM
)
*
C4NUM
;
for
(
int
oc
=
task_id
;
oc
<
oc4
;
oc
+=
thread_count
)
{
const
float
*
weight
=
weight_data
+
oc
*
16
*
C4NUM
;
const
float
*
bias
=
bias_data
+
oc
*
C4NUM
;
ConvDw3x3Fp32InputTrans
(
input
+
oc
*
C4NUM
,
trans_buffer
,
block_buffer
,
out_h_block
,
out_w_block
,
conv_param
);
ConvDw3x3Fp32Winograd
(
trans_buffer
,
weight
,
out_h_block
,
out_w_block
);
ConvDw3x3Fp32OutputTrans
(
trans_buffer
,
output
+
oc
*
C4NUM
,
bias
,
out_h_block
,
out_w_block
,
conv_param
);
}
}
}
/*conv depthwise 3x3 fp32 end*/
/*deconv depthwise fp32 begin*/
void
DeconvDepthwiseBorderPixel
(
float
*
dst
,
const
float
*
src
,
const
float
*
weight
,
int
height
,
int
width
,
int
in_kh_step
,
int
in_kw_step
,
int
kernel_w
)
{
...
...
mindspore/lite/src/runtime/kernel/arm/nnacl/fp32/conv_depthwise.h
浏览文件 @
94f8cf67
...
...
@@ -42,8 +42,12 @@ void InitSlidingParam(SlidingWindowParam *sliding, const ConvParameter *conv_par
void
ConvDwC4Fp32
(
float
*
output_data
,
const
float
*
input_data
,
const
float
*
weight_data
,
const
float
*
bias_data
,
const
ConvParameter
*
conv_param
,
const
SlidingWindowParam
*
sliding
,
int
task_id
);
void
ConvDw3x3Fp32FilterTrans
(
float
*
trans_weight
,
float
*
weight
,
int
oc4
);
void
ConvDw3x3Fp32
(
float
*
output_data
,
const
float
*
input_data
,
const
float
*
weight_data
,
const
float
*
bias_data
,
float
*
trans_buffer
,
float
*
block_buffer
,
const
ConvParameter
*
conv_param
,
int
task_id
);
void
DeconvDwC4Fp32
(
float
*
output_data
,
const
float
*
input_data
,
const
float
*
weight_data
,
const
float
*
bias_data
,
const
ConvParameter
*
conv_param
,
const
SlidingWindowParam
*
sliding
,
int
task_id
);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_NNACL_FP32_CONV_DEPTHWISE_H_
mindspore/lite/test/ut/src/runtime/kernel/arm/fp32/convolution_depthwise_fp32_tests.cc
0 → 100644
浏览文件 @
94f8cf67
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <iostream>
#include <memory>
#include "utils/log_adapter.h"
#include "common/common_test.h"
#include "src/common/file_utils.h"
#include "mindspore/lite/src/runtime/kernel/arm/base/convolution_base.h"
#include "mindspore/lite/src/kernel_registry.h"
#include "mindspore/lite/src/ops/ops.h"
namespace
mindspore
{
class
TestConvolutionDwFp32
:
public
mindspore
::
Common
{
public:
TestConvolutionDwFp32
()
{}
};
void
InitConvDwParam
(
ConvParameter
*
conv_param
)
{
conv_param
->
input_batch_
=
1
;
conv_param
->
input_h_
=
288
;
conv_param
->
input_w_
=
288
;
conv_param
->
input_channel_
=
25
;
conv_param
->
output_batch_
=
1
;
conv_param
->
output_h_
=
288
;
conv_param
->
output_w_
=
288
;
conv_param
->
output_channel_
=
25
;
conv_param
->
kernel_h_
=
3
;
conv_param
->
kernel_w_
=
3
;
conv_param
->
stride_h_
=
1
;
conv_param
->
stride_w_
=
1
;
conv_param
->
dilation_h_
=
1
;
conv_param
->
dilation_w_
=
1
;
conv_param
->
pad_h_
=
1
;
conv_param
->
pad_w_
=
1
;
}
void
InitConvDwCreator
(
std
::
vector
<
lite
::
tensor
::
Tensor
*>
*
inputs
,
std
::
vector
<
lite
::
tensor
::
Tensor
*>
*
outputs
,
const
ConvParameter
*
conv_param
)
{
// prepare input, format NHWC
size_t
input_size
;
std
::
string
input_path
=
"./test_data/convDw/convDwfp32_input.bin"
;
auto
input_data
=
reinterpret_cast
<
float
*>
(
mindspore
::
lite
::
ReadFile
(
input_path
.
c_str
(),
&
input_size
));
auto
*
input
=
new
lite
::
tensor
::
Tensor
;
input
->
set_data_type
(
kNumberTypeFloat32
);
input
->
SetFormat
(
schema
::
Format_NHWC
);
input
->
set_shape
({
conv_param
->
input_batch_
,
conv_param
->
input_h_
,
conv_param
->
input_w_
,
conv_param
->
input_channel_
});
input
->
MallocData
();
memcpy
(
input
->
Data
(),
input_data
,
input_size
);
// prepare weight, format co kh kw ci, ci = 1
size_t
weight_size
;
std
::
string
weight_path
=
"./test_data/convDw/convDwfp32_weight.bin"
;
auto
weight_data
=
reinterpret_cast
<
float
*>
(
mindspore
::
lite
::
ReadFile
(
weight_path
.
c_str
(),
&
weight_size
));
auto
*
weight
=
new
lite
::
tensor
::
Tensor
;
weight
->
set_data_type
(
kNumberTypeFloat32
);
weight
->
set_shape
({
conv_param
->
output_channel_
,
conv_param
->
kernel_h_
,
conv_param
->
kernel_w_
,
1
});
weight
->
MallocData
();
memcpy
(
weight
->
Data
(),
weight_data
,
weight_size
);
// prepare bias
auto
*
bias
=
new
lite
::
tensor
::
Tensor
;
bias
->
set_data_type
(
kNumberTypeFloat32
);
bias
->
set_shape
({
conv_param
->
output_channel_
});
bias
->
MallocData
();
memset
(
bias
->
Data
(),
0
,
bias
->
ElementsNum
()
*
sizeof
(
float
));
inputs
->
push_back
(
input
);
inputs
->
push_back
(
weight
);
inputs
->
push_back
(
bias
);
auto
*
output
=
new
lite
::
tensor
::
Tensor
;
output
->
set_data_type
(
kNumberTypeFloat32
);
output
->
set_shape
(
{
conv_param
->
output_batch_
,
conv_param
->
output_h_
,
conv_param
->
output_w_
,
conv_param
->
output_channel_
});
output
->
SetFormat
(
schema
::
Format_NHWC
);
output
->
MallocData
();
memset
(
output
->
Data
(),
0
,
output
->
ElementsNum
()
*
sizeof
(
float
));
outputs
->
push_back
(
output
);
}
TEST_F
(
TestConvolutionDwFp32
,
ConvDwFp32Accuracy
)
{
// prepare stage
auto
conv_param
=
new
ConvParameter
();
InitConvDwParam
(
conv_param
);
// init ctx
auto
ctx
=
new
Context
();
ctx
->
thread_num_
=
4
;
// init tensor
std
::
vector
<
lite
::
tensor
::
Tensor
*>
inputs
;
std
::
vector
<
lite
::
tensor
::
Tensor
*>
outputs
;
InitConvDwCreator
(
&
inputs
,
&
outputs
,
conv_param
);
// register op
kernel
::
KernelKey
desc
=
{
kernel
::
KERNEL_ARCH
::
kCPU
,
kNumberTypeFloat32
,
schema
::
PrimitiveType_DepthwiseConv2D
};
auto
creator
=
lite
::
KernelRegistry
::
GetInstance
()
->
GetCreator
(
desc
);
ASSERT_NE
(
creator
,
nullptr
);
kernel
::
LiteKernel
*
kernel
=
creator
(
inputs
,
outputs
,
reinterpret_cast
<
OpParameter
*>
(
conv_param
),
ctx
,
desc
);
ASSERT_NE
(
kernel
,
nullptr
);
// op run
kernel
->
Run
();
std
::
cout
<<
"==================output data================="
<<
std
::
endl
;
auto
output_ptr
=
reinterpret_cast
<
float
*>
(
outputs
[
0
]
->
Data
());
for
(
int
i
=
0
;
i
<
20
;
i
++
)
{
std
::
cout
<<
output_ptr
[
i
]
<<
", "
;
}
std
::
cout
<<
std
::
endl
;
// read output data, format NHWC
size_t
output_size
;
std
::
string
output_path
=
"./test_data/convDw/convDwfp32_output.bin"
;
auto
correct_data
=
reinterpret_cast
<
float
*>
(
mindspore
::
lite
::
ReadFile
(
output_path
.
c_str
(),
&
output_size
));
// compare
CompareOutputData
(
output_ptr
,
correct_data
,
outputs
[
0
]
->
ElementsNum
(),
0.0001
);
delete
conv_param
;
for
(
int
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
delete
inputs
[
i
];
}
for
(
int
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
delete
outputs
[
i
];
}
delete
kernel
;
delete
correct_data
;
MS_LOG
(
INFO
)
<<
"TestConvolutionDwFp32 accuracy passed"
;
}
TEST_F
(
TestConvolutionDwFp32
,
ConvDwFp32Performance
)
{
// prepare stage
auto
conv_param
=
new
ConvParameter
();
InitConvDwParam
(
conv_param
);
// init ctx
auto
ctx
=
new
Context
();
ctx
->
thread_num_
=
1
;
// init tensor
std
::
vector
<
lite
::
tensor
::
Tensor
*>
inputs
;
std
::
vector
<
lite
::
tensor
::
Tensor
*>
outputs
;
InitConvDwCreator
(
&
inputs
,
&
outputs
,
conv_param
);
// register op
kernel
::
KernelKey
desc
=
{
kernel
::
KERNEL_ARCH
::
kCPU
,
kNumberTypeFloat32
,
schema
::
PrimitiveType_DepthwiseConv2D
};
auto
creator
=
lite
::
KernelRegistry
::
GetInstance
()
->
GetCreator
(
desc
);
ASSERT_NE
(
creator
,
nullptr
);
kernel
::
LiteKernel
*
kernel
=
creator
(
inputs
,
outputs
,
reinterpret_cast
<
OpParameter
*>
(
conv_param
),
ctx
,
desc
);
ASSERT_NE
(
kernel
,
nullptr
);
/* running warm up */
for
(
int
i
=
0
;
i
<
3
;
i
++
)
{
kernel
->
Run
();
}
/* running time cost */
int
loop_count
=
10
;
auto
time_start
=
mindspore
::
lite
::
GetTimeUs
();
for
(
int
i
=
0
;
i
<
loop_count
;
i
++
)
{
kernel
->
Run
();
}
auto
time_end
=
mindspore
::
lite
::
GetTimeUs
();
auto
cost
=
time_end
-
time_start
;
uint64_t
time_avg
=
cost
/
loop_count
;
printf
(
"Convolution_depthwise fp32 average time : %f ms
\n
"
,
time_avg
/
1000.0
f
);
delete
conv_param
;
for
(
int
i
=
0
;
i
<
inputs
.
size
();
i
++
)
{
delete
inputs
[
i
];
}
for
(
int
i
=
0
;
i
<
outputs
.
size
();
i
++
)
{
delete
outputs
[
i
];
}
delete
kernel
;
MS_LOG
(
INFO
)
<<
"TestConvolutionDwFp32 performance passed"
;
}
}
// namespace mindspore
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录