diff --git a/RELEASE.md b/RELEASE.md index 9bf74e98d6375af617195b4660dee997586bde84..ee54c5658b6ae782836ac15eaf73727d60597184 100644 --- a/RELEASE.md +++ b/RELEASE.md @@ -56,7 +56,6 @@ * Add 93 TFLite op. * Add 24 Caffe op. * Add 62 ONNX op. - * Add support for windows. * Add 11 optimized passes, include fusion/const fold. * Support aware-training and Post-training quantization. * CPU diff --git a/mindspore/lite/README.md b/mindspore/lite/README.md index abd29dcab10e51a1f829071c77fc4e40949528e5..cd78ec433899a895b64914507d3ac273ced8f144 100644 --- a/mindspore/lite/README.md +++ b/mindspore/lite/README.md @@ -54,3 +54,14 @@ For more details please check out our [MindSpore Lite Architecture Guide](https: Load the model and perform inference. [Inference](https://www.mindspore.cn/lite/tutorial/en/master/use/runtime.html) is the process of running input data through the model to get output. MindSpore provides a series of pre-trained models that can be deployed on mobile device [example](#TODO). + +## MindSpore Lite benchmark test result +Base on MindSpore r0.7, we test a couple of networks on HUAWEI Mate30 (Hisilicon Kirin990) mobile phone, and get the test results below for your reference. + + | NetWork | Thread Number | Average Run Time(ms) | + | ------------------- | ------------- | -------------------- | + | basic_squeezenet | 4 | 9.10 | + | inception_v3 | 4 | 69.361 | + | mobilenet_v1_10_224 | 4 | 7.137 | + | mobilenet_v2_10_224 | 4 | 5.569 | + | resnet_v2_50 | 4 | 48.691 | diff --git a/mindspore/lite/README_CN.md b/mindspore/lite/README_CN.md index 75b880580aee2719ba56b40630c301e7b3b8a25f..30474c1186e0ce32aeb1aa2429bc1ea5e88213eb 100644 --- a/mindspore/lite/README_CN.md +++ b/mindspore/lite/README_CN.md @@ -64,3 +64,14 @@ MindSpore Lite是MindSpore推出的端云协同的、轻量化、高性能AI推 主要完成模型推理工作,即加载模型,完成模型相关的所有计算。[推理](https://www.mindspore.cn/lite/tutorial/zh-CN/master/use/runtime.html)是通过模型运行输入数据,获取预测的过程。 MindSpore提供了一系列预训练模型部署在智能终端的[样例](#TODO)。 + +## MindSpore Lite性能参考数据 +我们在HUAWEI Mate30(Hisilicon Kirin990)手机上,基于MindSpore r0.7,测试了一组端侧常见网络的性能数据,供您参考: + + | 网络 | 线程数 | 平均推理时间(毫秒) | + | ------------------- | ------ | ------------------ | + | basic_squeezenet | 4 | 9.10 | + | inception_v3 | 4 | 69.361 | + | mobilenet_v1_10_224 | 4 | 7.137 | + | mobilenet_v2_10_224 | 4 | 5.569 | + | resnet_v2_50 | 4 | 48.691 |