Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
7ddddc41
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7ddddc41
编写于
8月 19, 2020
作者:
L
lizhenyu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add FusedBatchNoramEx gpu kernel
上级
b4b76b61
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
392 addition
and
0 deletion
+392
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/fused_batch_norm_ex_gpu_kernel.cc
.../kernel_compiler/gpu/nn/fused_batch_norm_ex_gpu_kernel.cc
+110
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/fused_batch_norm_ex_gpu_kernel.h
...d/kernel_compiler/gpu/nn/fused_batch_norm_ex_gpu_kernel.h
+276
-0
mindspore/ccsrc/utils/utils.h
mindspore/ccsrc/utils/utils.h
+6
-0
未找到文件。
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/fused_batch_norm_ex_gpu_kernel.cc
0 → 100644
浏览文件 @
7ddddc41
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/nn/fused_batch_norm_ex_gpu_kernel.h"
namespace
mindspore
{
namespace
kernel
{
MS_REG_GPU_KERNEL_ONE
(
FusedBatchNormEx
,
KernelAttr
()
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
),
FusedBatchNormExGpuKernel
,
float
)
MS_REG_GPU_KERNEL_ONE
(
FusedBatchNormEx
,
KernelAttr
()
.
AddInputAttr
(
kNumberTypeFloat16
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat16
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
),
FusedBatchNormExGpuKernel
,
half
)
MS_REG_GPU_KERNEL_ONE
(
FusedBatchNormExWithActivation
,
KernelAttr
()
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
),
FusedBatchNormExGpuKernel
,
float
)
MS_REG_GPU_KERNEL_ONE
(
FusedBatchNormExWithActivation
,
KernelAttr
()
.
AddInputAttr
(
kNumberTypeFloat16
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat16
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
),
FusedBatchNormExGpuKernel
,
half
)
MS_REG_GPU_KERNEL_ONE
(
FusedBatchNormExWithAddAndActivation
,
KernelAttr
()
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
),
FusedBatchNormExGpuKernel
,
float
)
MS_REG_GPU_KERNEL_ONE
(
FusedBatchNormExWithAddAndActivation
,
KernelAttr
()
.
AddInputAttr
(
kNumberTypeFloat16
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat32
)
.
AddInputAttr
(
kNumberTypeFloat16
)
.
AddOutputAttr
(
kNumberTypeFloat16
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
)
.
AddOutputAttr
(
kNumberTypeFloat32
),
FusedBatchNormExGpuKernel
,
half
)
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/backend/kernel_compiler/gpu/nn/fused_batch_norm_ex_gpu_kernel.h
0 → 100644
浏览文件 @
7ddddc41
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_FUSED_BATCH_NORM_EX_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_FUSED_BATCH_NORM_EX_GPU_KERNEL_H_
#include <vector>
#include <string>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/kernel_constants.h"
#include "utils/utils.h"
namespace
mindspore
{
namespace
kernel
{
template
<
typename
T
>
class
FusedBatchNormExGpuKernel
:
public
GpuKernel
{
public:
FusedBatchNormExGpuKernel
()
:
input_x_size_
(
0
),
input_z_size_
(
0
),
para_size_
(
0
),
output_size_
(
0
),
workspace_size_
(
0
),
reserve_size_
(
0
),
mode_
(
CUDNN_BATCHNORM_SPATIAL
),
bn_ops_
(
CUDNN_BATCHNORM_OPS_BN
),
epsilon_
(
10e-5
),
exp_avg_factor_
(
0.1
),
is_null_input_
(
false
),
x_desc_
(
nullptr
),
y_desc_
(
nullptr
),
z_desc_
(
nullptr
),
scale_bias_mean_var_desc_
(
nullptr
),
activation_desc_
(
nullptr
),
handle_
(
nullptr
),
cudnn_data_type_
(
CUDNN_DATA_FLOAT
)
{}
~
FusedBatchNormExGpuKernel
()
override
{
DestroyResource
();
}
const
std
::
vector
<
size_t
>
&
GetInputSizeList
()
const
override
{
return
input_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetOutputSizeList
()
const
override
{
return
output_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetWorkspaceSizeList
()
const
override
{
return
workspace_size_list_
;
}
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
,
void
*
stream_ptr
)
override
{
VARIABLE_NOT_USED
(
workspace
);
VARIABLE_NOT_USED
(
stream_ptr
);
if
(
is_null_input_
)
{
return
true
;
}
auto
x
=
GetDeviceAddress
<
T
>
(
inputs
,
0
);
auto
scale
=
GetDeviceAddress
<
float
>
(
inputs
,
1
);
auto
bias
=
GetDeviceAddress
<
float
>
(
inputs
,
2
);
auto
runing_mean
=
GetDeviceAddress
<
float
>
(
inputs
,
3
);
auto
runnig_variance
=
GetDeviceAddress
<
float
>
(
inputs
,
4
);
T
*
z
=
nullptr
;
if
(
bn_ops_
==
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION
)
{
z
=
GetDeviceAddress
<
T
>
(
inputs
,
5
);
}
auto
y
=
GetDeviceAddress
<
T
>
(
outputs
,
0
);
auto
save_mean
=
GetDeviceAddress
<
float
>
(
outputs
,
3
);
auto
save_variance
=
GetDeviceAddress
<
float
>
(
outputs
,
4
);
auto
reserve_addr
=
GetDeviceAddress
<
float
>
(
outputs
,
5
);
T
*
workspace_addr
=
nullptr
;
if
(
workspace_size_
!=
0
)
{
workspace_addr
=
GetDeviceAddress
<
T
>
(
workspace
,
0
);
}
const
float
alpha
=
1
;
const
float
beta
=
0
;
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnBatchNormalizationForwardTrainingEx
(
handle_
,
mode_
,
bn_ops_
,
&
alpha
,
&
beta
,
x_desc_
,
x
,
z_desc_
,
z
,
y_desc_
,
y
,
scale_bias_mean_var_desc_
,
scale
,
bias
,
exp_avg_factor_
,
runing_mean
,
runnig_variance
,
epsilon_
,
save_mean
,
save_variance
,
activation_desc_
,
workspace_addr
,
workspace_size_
,
reserve_addr
,
reserve_size_
),
"Kernel launch failed"
);
return
true
;
}
bool
Init
(
const
CNodePtr
&
kernel_node
)
override
{
MS_EXCEPTION_IF_NULL
(
kernel_node
);
std
::
string
kernel_name
=
AnfAlgo
::
GetCNodeName
(
kernel_node
);
if
(
kernel_name
==
kFusedBatchNormEx
)
{
bn_ops_
=
CUDNN_BATCHNORM_OPS_BN
;
}
else
if
(
kernel_name
==
kFusedBatchNormExWithActivation
)
{
bn_ops_
=
CUDNN_BATCHNORM_OPS_BN_ACTIVATION
;
}
else
if
(
kernel_name
==
kFusedBatchNormExWithAddAndActivation
)
{
bn_ops_
=
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION
;
}
else
{
MS_LOG
(
EXCEPTION
)
<<
"Invalid kernel name: "
<<
kernel_name
;
}
InitResource
();
mode_
=
CUDNN_BATCHNORM_SPATIAL_PERSISTENT
;
epsilon_
=
GetAttr
<
float
>
(
kernel_node
,
"epsilon"
);
exp_avg_factor_
=
GetAttr
<
float
>
(
kernel_node
,
"momentum"
);
cudnn_data_type_
=
GetCudnnDataType
(
TypeIdLabel
(
AnfAlgo
::
GetInputDeviceDataType
(
kernel_node
,
0
)));
size_t
input_num
=
AnfAlgo
::
GetInputTensorNum
(
kernel_node
);
if
(
bn_ops_
==
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION
)
{
if
(
input_num
!=
6
)
{
MS_LOG
(
EXCEPTION
)
<<
"input tensor size is "
<<
input_num
<<
", "
<<
kernel_name
<<
" should be 6"
;
}
}
else
{
if
(
input_num
!=
5
)
{
MS_LOG
(
EXCEPTION
)
<<
"input tensor size is "
<<
input_num
<<
", "
<<
kernel_name
<<
" should be 5"
;
}
}
auto
shape
=
AnfAlgo
::
GetInputDeviceShape
(
kernel_node
,
0
);
if
(
shape
.
size
()
!=
4
)
{
MS_LOG
(
EXCEPTION
)
<<
"tensor shape is "
<<
shape
.
size
()
<<
", FusedBatchNormExGpuKernel should be 4"
;
}
is_null_input_
=
CHECK_NULL_INPUT
(
shape
);
if
(
is_null_input_
)
{
MS_LOG
(
WARNING
)
<<
"FusedBatchNormExGpuKernel input is null"
;
InitSizeLists
();
return
true
;
}
auto
format
=
AnfAlgo
::
GetInputFormat
(
kernel_node
,
0
);
SetTensorDescriptor
(
format
,
shape
);
InitSizeLists
();
return
true
;
}
protected:
void
InitResource
()
override
{
handle_
=
device
::
gpu
::
GPUDeviceManager
::
GetInstance
().
GetCudnnHandle
();
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnCreateTensorDescriptor
(
&
x_desc_
),
"Create x desc failed"
);
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnCreateTensorDescriptor
(
&
y_desc_
),
"Create y desc failed"
);
if
(
bn_ops_
==
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION
)
{
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnCreateTensorDescriptor
(
&
z_desc_
),
"Create z desc failed"
);
}
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnCreateTensorDescriptor
(
&
scale_bias_mean_var_desc_
),
"Create para desc failed"
);
if
(
bn_ops_
!=
CUDNN_BATCHNORM_OPS_BN
)
{
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnCreateActivationDescriptor
(
&
activation_desc_
),
"Create activation descriptor failed"
);
}
}
void
InitSizeLists
()
override
{
if
(
!
is_null_input_
)
{
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnGetTensorSizeInBytes
(
x_desc_
,
&
input_x_size_
),
"Get input x size failed"
);
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnGetTensorSizeInBytes
(
scale_bias_mean_var_desc_
,
&
para_size_
),
"Get para size failed"
);
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnGetTensorSizeInBytes
(
y_desc_
,
&
output_size_
),
"Get output size failed"
);
if
(
bn_ops_
==
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION
)
{
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnGetTensorSizeInBytes
(
z_desc_
,
&
input_z_size_
),
"Get input z size failed"
);
}
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize
(
handle_
,
mode_
,
bn_ops_
,
x_desc_
,
z_desc_
,
y_desc_
,
scale_bias_mean_var_desc_
,
activation_desc_
,
&
workspace_size_
),
"cudnnGetBatchNormalizationForwardTrainingExWorkspaceSize failed"
);
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnGetBatchNormalizationTrainingExReserveSpaceSize
(
handle_
,
mode_
,
bn_ops_
,
activation_desc_
,
x_desc_
,
&
reserve_size_
),
"Get reserve size failed"
);
}
input_size_list_
.
push_back
(
input_x_size_
);
// input x
input_size_list_
.
push_back
(
para_size_
);
// scale
input_size_list_
.
push_back
(
para_size_
);
// bias
input_size_list_
.
push_back
(
para_size_
);
// mean
input_size_list_
.
push_back
(
para_size_
);
// variance
if
(
bn_ops_
==
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION
)
{
input_size_list_
.
push_back
(
input_z_size_
);
// input z
}
output_size_list_
.
push_back
(
output_size_
);
// output
output_size_list_
.
push_back
(
para_size_
);
// save scale
output_size_list_
.
push_back
(
para_size_
);
// save bias
output_size_list_
.
push_back
(
para_size_
);
// save mean
output_size_list_
.
push_back
(
para_size_
);
// save variance
output_size_list_
.
push_back
(
reserve_size_
);
// reserve space
workspace_size_list_
.
push_back
(
workspace_size_
);
}
private:
void
SetTensorDescriptor
(
const
std
::
string
&
format
,
const
std
::
vector
<
size_t
>
&
shape
)
{
cudnnTensorFormat_t
cudnn_format
;
int
batch
,
channel
,
height
,
width
;
if
(
format
==
kOpFormat_NHWC
)
{
batch
=
SizeToInt
(
shape
[
0
]);
height
=
SizeToInt
(
shape
[
1
]);
width
=
SizeToInt
(
shape
[
2
]);
channel
=
SizeToInt
(
shape
[
3
]);
cudnn_format
=
CUDNN_TENSOR_NHWC
;
}
else
{
batch
=
SizeToInt
(
shape
[
0
]);
channel
=
SizeToInt
(
shape
[
1
]);
height
=
SizeToInt
(
shape
[
2
]);
width
=
SizeToInt
(
shape
[
3
]);
cudnn_format
=
CUDNN_TENSOR_NCHW
;
}
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnSetTensor4dDescriptor
(
x_desc_
,
cudnn_format
,
cudnn_data_type_
,
batch
,
channel
,
height
,
width
),
"Set x desc failed"
);
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnSetTensor4dDescriptor
(
y_desc_
,
cudnn_format
,
cudnn_data_type_
,
batch
,
channel
,
height
,
width
),
"Set y desc failed"
);
if
(
bn_ops_
==
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION
)
{
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnSetTensor4dDescriptor
(
z_desc_
,
cudnn_format
,
cudnn_data_type_
,
batch
,
channel
,
height
,
width
),
"Set z desc failed"
);
}
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnSetTensor4dDescriptor
(
scale_bias_mean_var_desc_
,
CUDNN_TENSOR_NCHW
,
CUDNN_DATA_FLOAT
,
1
,
channel
,
1
,
1
),
"Set para desc failed"
);
if
(
bn_ops_
!=
CUDNN_BATCHNORM_OPS_BN
)
{
CHECK_CUDNN_RET_WITH_EXCEPT
(
cudnnSetActivationDescriptor
(
activation_desc_
,
CUDNN_ACTIVATION_RELU
,
CUDNN_NOT_PROPAGATE_NAN
,
0.0
),
"cudnnSetActivationDescriptor failed"
);
}
}
void
DestroyResource
()
noexcept
{
CHECK_CUDNN_RET_WITH_ERROR
(
cudnnDestroyTensorDescriptor
(
x_desc_
),
"Destroy x desc failed"
);
CHECK_CUDNN_RET_WITH_ERROR
(
cudnnDestroyTensorDescriptor
(
y_desc_
),
"Destroy y desc failed"
);
CHECK_CUDNN_RET_WITH_ERROR
(
cudnnDestroyTensorDescriptor
(
scale_bias_mean_var_desc_
),
"Destroy para desc failed"
);
if
(
bn_ops_
==
CUDNN_BATCHNORM_OPS_BN_ADD_ACTIVATION
)
{
CHECK_CUDNN_RET_WITH_ERROR
(
cudnnDestroyTensorDescriptor
(
z_desc_
),
"Destroy z desc failed"
);
}
if
(
bn_ops_
!=
CUDNN_BATCHNORM_OPS_BN
)
{
CHECK_CUDNN_RET_WITH_ERROR
(
cudnnDestroyActivationDescriptor
(
activation_desc_
),
"Destroy activation descriptor failed"
);
}
}
size_t
input_x_size_
;
size_t
input_z_size_
;
size_t
para_size_
;
size_t
output_size_
;
size_t
workspace_size_
;
size_t
reserve_size_
;
cudnnBatchNormMode_t
mode_
;
cudnnBatchNormOps_t
bn_ops_
;
double
epsilon_
;
double
exp_avg_factor_
;
bool
is_null_input_
;
cudnnTensorDescriptor_t
x_desc_
;
cudnnTensorDescriptor_t
y_desc_
;
cudnnTensorDescriptor_t
z_desc_
;
cudnnTensorDescriptor_t
scale_bias_mean_var_desc_
;
cudnnActivationDescriptor_t
activation_desc_
;
cudnnHandle_t
handle_
;
cudnnDataType_t
cudnn_data_type_
;
std
::
vector
<
size_t
>
input_size_list_
;
std
::
vector
<
size_t
>
output_size_list_
;
std
::
vector
<
size_t
>
workspace_size_list_
;
};
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_NN_FUSED_BATCH_NORM_EX_GPU_KERNEL_H_
mindspore/ccsrc/utils/utils.h
浏览文件 @
7ddddc41
...
@@ -42,6 +42,12 @@ constexpr auto kFusedBN3OpName = "FusedBN3";
...
@@ -42,6 +42,12 @@ constexpr auto kFusedBN3OpName = "FusedBN3";
constexpr
auto
kBNGrad1OpName
=
"BNGrad1"
;
constexpr
auto
kBNGrad1OpName
=
"BNGrad1"
;
constexpr
auto
kBNGrad2OpName
=
"BNGrad2"
;
constexpr
auto
kBNGrad2OpName
=
"BNGrad2"
;
constexpr
auto
kBNGrad3OpName
=
"BNGrad3"
;
constexpr
auto
kBNGrad3OpName
=
"BNGrad3"
;
constexpr
auto
kFusedBatchNormEx
=
"FusedBatchNormEx"
;
constexpr
auto
kFusedBatchNormExWithActivation
=
"FusedBatchNormExWithActivation"
;
constexpr
auto
kFusedBatchNormExWithAddAndActivation
=
"FusedBatchNormExWithAddAndActivation"
;
constexpr
auto
kFusedBatchNormGradEx
=
"FusedBatchNormGradEx"
;
constexpr
auto
kFusedBatchNormGradExWithActivation
=
"FusedBatchNormGradExWithActivation"
;
constexpr
auto
kFusedBatchNormGradExWithAddAndActivation
=
"FusedBatchNormGradExWithAddAndActivation"
;
constexpr
auto
kClearZeroOpName
=
"ClearZero"
;
constexpr
auto
kClearZeroOpName
=
"ClearZero"
;
constexpr
auto
kAtomicAddrCleanOpName
=
"AtomicAddrClean"
;
constexpr
auto
kAtomicAddrCleanOpName
=
"AtomicAddrClean"
;
constexpr
auto
kGetNextOpName
=
"GetNext"
;
constexpr
auto
kGetNextOpName
=
"GetNext"
;
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录