提交 7bdcc319 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!2325 Addressing comments from PR2314

Merge pull request !2325 from imaaamin/object_ops_pr2
......@@ -353,10 +353,10 @@ void bindTensorOps1(py::module *m) {
.def(py::init<std::vector<std::shared_ptr<TensorOp>>, int32_t>(), py::arg("operations"),
py::arg("NumOps") = UniformAugOp::kDefNumOps);
(void)py::class_<BoundingBoxAugOp, TensorOp, std::shared_ptr<BoundingBoxAugOp>>(
*m, "BoundingBoxAugOp", "Tensor operation to apply a transformation on a random choice of bounding boxes.")
(void)py::class_<BoundingBoxAugmentOp, TensorOp, std::shared_ptr<BoundingBoxAugmentOp>>(
*m, "BoundingBoxAugmentOp", "Tensor operation to apply a transformation on a random choice of bounding boxes.")
.def(py::init<std::shared_ptr<TensorOp>, float>(), py::arg("transform"),
py::arg("ratio") = BoundingBoxAugOp::defRatio);
py::arg("ratio") = BoundingBoxAugmentOp::kDefRatio);
(void)py::class_<ResizeBilinearOp, TensorOp, std::shared_ptr<ResizeBilinearOp>>(
*m, "ResizeBilinearOp",
......
......@@ -23,12 +23,14 @@
namespace mindspore {
namespace dataset {
const float BoundingBoxAugOp::defRatio = 0.3;
const float BoundingBoxAugmentOp::kDefRatio = 0.3;
BoundingBoxAugOp::BoundingBoxAugOp(std::shared_ptr<TensorOp> transform, float ratio)
: ratio_(ratio), transform_(std::move(transform)) {}
BoundingBoxAugmentOp::BoundingBoxAugmentOp(std::shared_ptr<TensorOp> transform, float ratio)
: ratio_(ratio), transform_(std::move(transform)) {
rnd_.seed(GetSeed());
}
Status BoundingBoxAugOp::Compute(const TensorRow &input, TensorRow *output) {
Status BoundingBoxAugmentOp::Compute(const TensorRow &input, TensorRow *output) {
IO_CHECK_VECTOR(input, output);
BOUNDING_BOX_CHECK(input); // check if bounding boxes are valid
uint32_t num_of_boxes = input[1]->shape()[0];
......@@ -37,8 +39,7 @@ Status BoundingBoxAugOp::Compute(const TensorRow &input, TensorRow *output) {
std::vector<uint32_t> selected_boxes;
for (uint32_t i = 0; i < num_of_boxes; i++) boxes[i] = i;
// sample bboxes according to ratio picked by user
std::random_device rd;
std::sample(boxes.begin(), boxes.end(), std::back_inserter(selected_boxes), num_to_aug, std::mt19937(rd()));
std::sample(boxes.begin(), boxes.end(), std::back_inserter(selected_boxes), num_to_aug, rnd_);
std::shared_ptr<Tensor> crop_out;
std::shared_ptr<Tensor> res_out;
std::shared_ptr<CVTensor> input_restore = CVTensor::AsCVTensor(input[0]);
......
......@@ -24,33 +24,35 @@
#include "dataset/core/tensor.h"
#include "dataset/kernels/tensor_op.h"
#include "dataset/util/status.h"
#include "dataset/util/random.h"
namespace mindspore {
namespace dataset {
class BoundingBoxAugOp : public TensorOp {
class BoundingBoxAugmentOp : public TensorOp {
public:
// Default values, also used by python_bindings.cc
static const float defRatio;
static const float kDefRatio;
// Constructor for BoundingBoxAugmentOp
// @param std::shared_ptr<TensorOp> transform transform: C++ opration to apply on select bounding boxes
// @param float ratio: ratio of bounding boxes to have the transform applied on
BoundingBoxAugOp(std::shared_ptr<TensorOp> transform, float ratio);
BoundingBoxAugmentOp(std::shared_ptr<TensorOp> transform, float ratio);
~BoundingBoxAugOp() override = default;
~BoundingBoxAugmentOp() override = default;
// Provide stream operator for displaying it
friend std::ostream &operator<<(std::ostream &out, const BoundingBoxAugOp &so) {
friend std::ostream &operator<<(std::ostream &out, const BoundingBoxAugmentOp &so) {
so.Print(out);
return out;
}
void Print(std::ostream &out) const override { out << "BoundingBoxAugOp"; }
void Print(std::ostream &out) const override { out << "BoundingBoxAugmentOp"; }
Status Compute(const TensorRow &input, TensorRow *output) override;
private:
float ratio_;
std::mt19937 rnd_;
std::shared_ptr<TensorOp> transform_;
};
} // namespace dataset
......
......@@ -29,20 +29,19 @@ Status RandomHorizontalFlipWithBBoxOp::Compute(const TensorRow &input, TensorRow
BOUNDING_BOX_CHECK(input);
if (distribution_(rnd_)) {
// To test bounding boxes algorithm, create random bboxes from image dims
size_t numOfBBoxes = input[1]->shape()[0]; // set to give number of bboxes
float imgCenter = (input[0]->shape()[1] / 2); // get the center of the image
size_t num_of_boxes = input[1]->shape()[0]; // set to give number of bboxes
float img_center = (input[0]->shape()[1] / 2); // get the center of the image
for (int i = 0; i < numOfBBoxes; i++) {
for (int i = 0; i < num_of_boxes; i++) {
uint32_t b_w = 0; // bounding box width
uint32_t min_x = 0;
// get the required items
input[1]->GetItemAt<uint32_t>(&min_x, {i, 0});
input[1]->GetItemAt<uint32_t>(&b_w, {i, 2});
// do the flip
float diff = imgCenter - min_x; // get distance from min_x to center
uint32_t refl_min_x = diff + imgCenter; // get reflection of min_x
float diff = img_center - min_x; // get distance from min_x to center
uint32_t refl_min_x = diff + img_center; // get reflection of min_x
uint32_t new_min_x = refl_min_x - b_w; // subtract from the reflected min_x to get the new one
input[1]->SetItemAt<uint32_t>({i, 0}, new_min_x);
}
(*output).push_back(nullptr);
......
......@@ -45,6 +45,10 @@
#define BOUNDING_BOX_CHECK(input) \
do { \
if (input[1]->shape().Size() < 2) { \
return Status(StatusCode::kBoundingBoxInvalidShape, __LINE__, __FILE__, \
"Bounding boxes shape should have at least two dims"); \
} \
uint32_t num_of_features = input[1]->shape()[1]; \
if (num_of_features < 4) { \
return Status(StatusCode::kBoundingBoxInvalidShape, __LINE__, __FILE__, \
......
......@@ -254,13 +254,16 @@ class RandomVerticalFlipWithBBox(cde.RandomVerticalFlipWithBBoxOp):
super().__init__(prob)
class BoundingBoxAug(cde.BoundingBoxAugOp):
class BoundingBoxAugment(cde.BoundingBoxAugmentOp):
"""
Flip the input image vertically, randomly with a given probability.
Apply a given image transform on a random selection of bounding box regions
of a given image.
Args:
transform: C++ operation (python OPs are not accepted).
ratio (float): Ratio of bounding boxes to apply augmentation on. Range: [0,1] (default=1).
transform: C++ transformation function to be applied on random selection
of bounding box regions of a given image.
ratio (float, optional): Ratio of bounding boxes to apply augmentation on.
Range: [0,1] (default=0.3).
"""
@check_bounding_box_augment_cpp
def __init__(self, transform, ratio=0.3):
......
......@@ -862,13 +862,13 @@ def check_bounding_box_augment_cpp(method):
transform = kwargs.get("transform")
if "ratio" in kwargs:
ratio = kwargs.get("ratio")
if not isinstance(ratio, float) and not isinstance(ratio, int):
raise ValueError("Ratio should be an int or float.")
if ratio is not None:
check_value(ratio, [0., 1.])
kwargs["ratio"] = ratio
else:
ratio = 0.3
if not isinstance(ratio, float) and not isinstance(ratio, int):
raise ValueError("Ratio should be an int or float.")
if not isinstance(transform, TensorOp):
raise ValueError("Transform can only be a C++ operation.")
kwargs["transform"] = transform
......
......@@ -16,7 +16,7 @@
Testing the bounding box augment op in DE
"""
from enum import Enum
from mindspore import log as logger
import mindspore.log as logger
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import matplotlib.pyplot as plt
......@@ -39,61 +39,38 @@ class BoxType(Enum):
WrongShape = 5
class AddBadAnnotation: # pylint: disable=too-few-public-methods
"""
Used to add erroneous bounding boxes to object detection pipelines.
Usage:
>>> # Adds a box that covers the whole image. Good for testing edge cases
>>> de = de.map(input_columns=["image", "annotation"],
>>> output_columns=["image", "annotation"],
>>> operations=AddBadAnnotation(BoxType.OnEdge))
"""
def __init__(self, box_type):
self.box_type = box_type
def __call__(self, img, bboxes):
def add_bad_annotation(img, bboxes, box_type):
"""
Used to generate erroneous bounding box examples on given img.
:param img: image where the bounding boxes are.
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
:param box_type: type of bad box
:return: bboxes with bad examples added
"""
height = img.shape[0]
width = img.shape[1]
if self.box_type == BoxType.WidthOverflow:
if box_type == BoxType.WidthOverflow:
# use box that overflows on width
return img, np.array([[0, 0, width + 1, height, 0, 0, 0]]).astype(np.uint32)
if self.box_type == BoxType.HeightOverflow:
if box_type == BoxType.HeightOverflow:
# use box that overflows on height
return img, np.array([[0, 0, width, height + 1, 0, 0, 0]]).astype(np.uint32)
if self.box_type == BoxType.NegativeXY:
if box_type == BoxType.NegativeXY:
# use box with negative xy
return img, np.array([[-10, -10, width, height, 0, 0, 0]]).astype(np.uint32)
if self.box_type == BoxType.OnEdge:
if box_type == BoxType.OnEdge:
# use box that covers the whole image
return img, np.array([[0, 0, width, height, 0, 0, 0]]).astype(np.uint32)
if self.box_type == BoxType.WrongShape:
if box_type == BoxType.WrongShape:
# use box that covers the whole image
return img, np.array([[0, 0, width - 1]]).astype(np.uint32)
return img, bboxes
def h_flip(image):
"""
Apply the random_horizontal
"""
# with the seed provided in this test case, it will always flip.
# that's why we flip here too
image = image[:, ::-1, :]
return image
def check_bad_box(data, box_type, expected_error):
"""
:param data: de object detection pipeline
......@@ -102,7 +79,7 @@ def check_bad_box(data, box_type, expected_error):
:return: None
"""
try:
test_op = c_vision.BoundingBoxAug(c_vision.RandomHorizontalFlip(1),
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1),
1) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
data = data.map(input_columns=["annotation"],
output_columns=["annotation"],
......@@ -111,7 +88,7 @@ def check_bad_box(data, box_type, expected_error):
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=AddBadAnnotation(box_type)) # Add column for "annotation"
operations=lambda img, bboxes: add_bad_annotation(img, bboxes, box_type))
# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
......@@ -187,7 +164,7 @@ def test_bounding_box_augment_with_rotation_op(plot=False):
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAug(c_vision.RandomRotation(90), 1)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomRotation(90), 1)
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
# maps to fix annotations to minddata standard
......@@ -216,7 +193,7 @@ def test_bounding_box_augment_with_crop_op(plot=False):
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAug(c_vision.RandomCrop(90), 1)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomCrop(90), 1)
# maps to fix annotations to minddata standard
data_voc1 = data_voc1.map(input_columns=["annotation"],
......@@ -244,7 +221,7 @@ def test_bounding_box_augment_valid_ratio_c(plot=False):
data_voc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.BoundingBoxAug(c_vision.RandomHorizontalFlip(1), 0.9)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 0.9)
# DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
# maps to fix annotations to minddata standard
......@@ -274,7 +251,7 @@ def test_bounding_box_augment_invalid_ratio_c():
try:
# ratio range is from 0 - 1
test_op = c_vision.BoundingBoxAug(c_vision.RandomHorizontalFlip(1), 1.5)
test_op = c_vision.BoundingBoxAugment(c_vision.RandomHorizontalFlip(1), 1.5)
# maps to fix annotations to minddata standard
data_voc1 = data_voc1.map(input_columns=["annotation"],
output_columns=["annotation"],
......
......@@ -16,12 +16,12 @@
Testing the random horizontal flip with bounding boxes op in DE
"""
from enum import Enum
from mindspore import log as logger
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import mindspore.log as logger
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
GENERATE_GOLDEN = False
......@@ -38,46 +38,33 @@ class BoxType(Enum):
OnEdge = 4
WrongShape = 5
class AddBadAnnotation: # pylint: disable=too-few-public-methods
"""
Used to add erroneous bounding boxes to object detection pipelines.
Usage:
>>> # Adds a box that covers the whole image. Good for testing edge cases
>>> de = de.map(input_columns=["image", "annotation"],
>>> output_columns=["image", "annotation"],
>>> operations=AddBadAnnotation(BoxType.OnEdge))
"""
def __init__(self, box_type):
self.box_type = box_type
def __call__(self, img, bboxes):
def add_bad_annotation(img, bboxes, box_type):
"""
Used to generate erroneous bounding box examples on given img.
:param img: image where the bounding boxes are.
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
:param box_type: type of bad box
:return: bboxes with bad examples added
"""
height = img.shape[0]
width = img.shape[1]
if self.box_type == BoxType.WidthOverflow:
if box_type == BoxType.WidthOverflow:
# use box that overflows on width
return img, np.array([[0, 0, width + 1, height, 0, 0, 0]]).astype(np.uint32)
if self.box_type == BoxType.HeightOverflow:
if box_type == BoxType.HeightOverflow:
# use box that overflows on height
return img, np.array([[0, 0, width, height + 1, 0, 0, 0]]).astype(np.uint32)
if self.box_type == BoxType.NegativeXY:
if box_type == BoxType.NegativeXY:
# use box with negative xy
return img, np.array([[-10, -10, width, height, 0, 0, 0]]).astype(np.uint32)
if self.box_type == BoxType.OnEdge:
if box_type == BoxType.OnEdge:
# use box that covers the whole image
return img, np.array([[0, 0, width, height, 0, 0, 0]]).astype(np.uint32)
if self.box_type == BoxType.WrongShape:
if box_type == BoxType.WrongShape:
# use box that covers the whole image
return img, np.array([[0, 0, width - 1]]).astype(np.uint32)
return img, bboxes
......@@ -87,8 +74,6 @@ def h_flip(image):
"""
Apply the random_horizontal
"""
# with the seed provided in this test case, it will always flip.
# that's why we flip here too
image = image[:, ::-1, :]
return image
......@@ -111,7 +96,7 @@ def check_bad_box(data, box_type, expected_error):
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=AddBadAnnotation(box_type)) # Add column for "annotation"
operations=lambda img, bboxes: add_bad_annotation(img, bboxes, box_type))
# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部