diff --git a/mindspore/ccsrc/pipeline/jit/pipeline.cc b/mindspore/ccsrc/pipeline/jit/pipeline.cc index e3f383213b89ca5281a2431f09f323845cea31e9..27f37f56cc19dcd746e79445030bbbc378002240 100644 --- a/mindspore/ccsrc/pipeline/jit/pipeline.cc +++ b/mindspore/ccsrc/pipeline/jit/pipeline.cc @@ -396,13 +396,13 @@ void ExecutorPy::GetGeBackendPolicy() const { } } -bool IsPhaseExportGeir(const std::string &phase_s) { - auto phase_to_export = "export.geir"; +bool IsPhaseExportAir(const std::string &phase_s) { + auto phase_to_export = "export.air"; return phase_s.rfind(phase_to_export) != std::string::npos; } std::vector GetPipline(const ResourcePtr &resource, const std::string &phase_s, bool use_vm) { - bool is_geir = IsPhaseExportGeir(phase_s); + bool is_air = IsPhaseExportAir(phase_s); std::string backend = MsContext::GetInstance()->backend_policy(); @@ -419,7 +419,7 @@ std::vector GetPipline(const ResourcePtr &resource, const std::strin } #endif - if (use_vm && backend != "ge" && !is_geir) { + if (use_vm && backend != "ge" && !is_air) { // Create backend and session auto backend_ptr = compile::CreateBackend(); // Connect session to debugger @@ -938,8 +938,9 @@ void FinalizeHccl() { void ExportGraph(const std::string &file_name, const std::string &, const std::string &phase) { #if (ENABLE_GE || ENABLE_D) ExportDFGraph(file_name, phase); +#else + MS_EXCEPTION(ValueError) << "Only MindSpore with Ascend backend support exporting file in 'AIR' format."; #endif - MS_LOG(WARNING) << "In ut test no export_graph"; } void ReleaseGeTsd() { diff --git a/mindspore/common/api.py b/mindspore/common/api.py index b0e2ff5a3f8c69683fbe3f908c84d4ea778f1cd8..bf9188c205036dd23698ce9db4ebf4f3001d94f4 100644 --- a/mindspore/common/api.py +++ b/mindspore/common/api.py @@ -515,7 +515,7 @@ class _Executor: graph_id (str): id of graph to be exported """ from .._c_expression import export_graph - export_graph(file_name, 'GEIR', graph_id) + export_graph(file_name, 'AIR', graph_id) def fetch_info_for_quant_export(self, exec_id): """Get graph proto from pipeline.""" diff --git a/mindspore/train/quant/quant.py b/mindspore/train/quant/quant.py index a17d114550e9e5efc6d4eca7fd2f749a73cada80..0fb56d9068761edf9cffddffd17969ed7eebc57b 100644 --- a/mindspore/train/quant/quant.py +++ b/mindspore/train/quant/quant.py @@ -435,9 +435,9 @@ class ExportToQuantInferNetwork: return network -def export(network, *inputs, file_name, mean=127.5, std_dev=127.5, file_format='GEIR'): +def export(network, *inputs, file_name, mean=127.5, std_dev=127.5, file_format='AIR'): """ - Exports MindSpore quantization predict model to deploy with GEIR. + Exports MindSpore quantization predict model to deploy with AIR. Args: network (Cell): MindSpore network produced by `convert_quant_network`. @@ -445,17 +445,17 @@ def export(network, *inputs, file_name, mean=127.5, std_dev=127.5, file_format=' file_name (str): File name of model to export. mean (int): Input data mean. Default: 127.5. std_dev (int, float): Input data variance. Default: 127.5. - file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'MINDIR' format for exported - quantization aware model. Default: 'GEIR'. + file_format (str): MindSpore currently supports 'AIR', 'ONNX' and 'MINDIR' format for exported + quantization aware model. Default: 'AIR'. - - GEIR: Graph Engine Intermidiate Representation. An intermidiate representation format of + - AIR: Graph Engine Intermidiate Representation. An intermidiate representation format of Ascend model. - MINDIR: MindSpore Native Intermidiate Representation for Anf. An intermidiate representation format for MindSpore models. Recommended suffix for output file is '.mindir'. """ supported_device = ["Ascend", "GPU"] - supported_formats = ['GEIR', 'MINDIR'] + supported_formats = ['AIR', 'MINDIR'] mean = validator.check_type("mean", mean, (int, float)) std_dev = validator.check_type("std_dev", std_dev, (int, float)) diff --git a/mindspore/train/serialization.py b/mindspore/train/serialization.py index 2783ac68697b2b391189b3d916d88759314d6ea7..1b4bcdcb523f93bcf071ce91aa7a86159bbb613f 100644 --- a/mindspore/train/serialization.py +++ b/mindspore/train/serialization.py @@ -445,7 +445,7 @@ def _fill_param_into_net(net, parameter_list): load_param_into_net(net, parameter_dict) -def export(net, *inputs, file_name, file_format='GEIR'): +def export(net, *inputs, file_name, file_format='AIR'): """ Exports MindSpore predict model to file in specified format. @@ -453,11 +453,12 @@ def export(net, *inputs, file_name, file_format='GEIR'): net (Cell): MindSpore network. inputs (Tensor): Inputs of the `net`. file_name (str): File name of model to export. - file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'MINDIR' format for exported model. + file_format (str): MindSpore currently supports 'AIR', 'ONNX' and 'MINDIR' format for exported model. - - GEIR: Graph Engine Intermidiate Representation. An intermidiate representation format of - Ascend model. + - AIR: Ascend Intermidiate Representation. An intermidiate representation format of Ascend model. + Recommended suffix for output file is '.air'. - ONNX: Open Neural Network eXchange. An open format built to represent machine learning models. + Recommended suffix for output file is '.onnx'. - MINDIR: MindSpore Native Intermidiate Representation for Anf. An intermidiate representation format for MindSpore models. Recommended suffix for output file is '.mindir'. @@ -465,7 +466,11 @@ def export(net, *inputs, file_name, file_format='GEIR'): logger.info("exporting model file:%s format:%s.", file_name, file_format) check_input_data(*inputs, data_class=Tensor) - supported_formats = ['GEIR', 'ONNX', 'MINDIR'] + if file_format == 'GEIR': + logger.warning(f"Format 'GEIR' is deprecated, it would be removed in future release, use 'AIR' instead.") + file_format = 'AIR' + + supported_formats = ['AIR', 'ONNX', 'MINDIR'] if file_format not in supported_formats: raise ValueError(f'Illegal file format {file_format}, it must be one of {supported_formats}') # switch network mode to infer when it is training @@ -474,13 +479,11 @@ def export(net, *inputs, file_name, file_format='GEIR'): net.set_train(mode=False) # export model net.init_parameters_data() - if file_format == 'GEIR': - phase_name = 'export.geir' + if file_format == 'AIR': + phase_name = 'export.air' graph_id, _ = _executor.compile(net, *inputs, phase=phase_name) _executor.export(file_name, graph_id) elif file_format == 'ONNX': # file_format is 'ONNX' - # NOTICE: the pahse name `export_onnx` is used for judging whether is exporting onnx in the compile pipeline, - # do not change it to other values. phase_name = 'export.onnx' graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False) onnx_stream = _executor._get_func_graph_proto(graph_id) diff --git a/model_zoo/official/cv/googlenet/README.md b/model_zoo/official/cv/googlenet/README.md index 67660b61d7b7f62ca8fb74d889576430f3143e8b..46e69d97fe9bb02191a690b3383908e19ac7838b 100644 --- a/model_zoo/official/cv/googlenet/README.md +++ b/model_zoo/official/cv/googlenet/README.md @@ -108,7 +108,7 @@ python eval.py > eval.log 2>&1 & OR sh run_eval.sh │ ├──config.py // parameter configuration ├── train.py // training script ├── eval.py // evaluation script - ├── export.py // export checkpoint files into geir/onnx + ├── export.py // export checkpoint files into air/onnx ``` ## [Script Parameters](#contents) @@ -133,7 +133,7 @@ Major parameters in train.py and config.py are: --checkpoint_path: The absolute full path to the checkpoint file saved after training. --onnx_filename: File name of the onnx model used in export.py. ---geir_filename: File name of the geir model used in export.py. +--air_filename: File name of the air model used in export.py. ``` @@ -226,7 +226,7 @@ accuracy: {'acc': 0.9217} | Total time | 1pc: 63.85 mins; 8pcs: 11.28 mins | | Parameters (M) | 13.0 | | Checkpoint for Fine tuning | 43.07M (.ckpt file) | -| Model for inference | 21.50M (.onnx file), 21.60M(.geir file) | +| Model for inference | 21.50M (.onnx file), 21.60M(.air file) | | Scripts | https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/googlenet | diff --git a/model_zoo/official/cv/googlenet/export.py b/model_zoo/official/cv/googlenet/export.py index d1a6de9b8db268401a56a83db4ef463a196f9cda..49a07872eead3119254c1430699482e977f7acaf 100644 --- a/model_zoo/official/cv/googlenet/export.py +++ b/model_zoo/official/cv/googlenet/export.py @@ -13,7 +13,7 @@ # limitations under the License. # ============================================================================ """ -##############export checkpoint file into geir and onnx models################# +##############export checkpoint file into air and onnx models################# python export.py """ import numpy as np @@ -33,4 +33,4 @@ if __name__ == '__main__': input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, 224, 224]), ms.float32) export(net, input_arr, file_name=cfg.onnx_filename, file_format="ONNX") - export(net, input_arr, file_name=cfg.geir_filename, file_format="GEIR") + export(net, input_arr, file_name=cfg.air_filename, file_format="AIR") diff --git a/model_zoo/official/cv/googlenet/src/config.py b/model_zoo/official/cv/googlenet/src/config.py index 5f803ad3257a05a6bc95507019f21df79968905f..3c37afab348a09aa8e67fcbf3b17709beb2c306e 100644 --- a/model_zoo/official/cv/googlenet/src/config.py +++ b/model_zoo/official/cv/googlenet/src/config.py @@ -34,5 +34,5 @@ cifar_cfg = edict({ 'keep_checkpoint_max': 10, 'checkpoint_path': './train_googlenet_cifar10-125_390.ckpt', 'onnx_filename': 'googlenet.onnx', - 'geir_filename': 'googlenet.geir' + 'air_filename': 'googlenet.air' }) diff --git a/model_zoo/official/cv/inceptionv3/export.py b/model_zoo/official/cv/inceptionv3/export.py index 302ff1302a039932082a19f828737796e45f9a3b..8326cf4ed4efcb5f50b8552c8a5789a73034b88f 100644 --- a/model_zoo/official/cv/inceptionv3/export.py +++ b/model_zoo/official/cv/inceptionv3/export.py @@ -13,7 +13,7 @@ # limitations under the License. # ============================================================================ """ -##############export checkpoint file into geir and onnx models################# +##############export checkpoint file into air and onnx models################# """ import argparse import numpy as np @@ -37,4 +37,4 @@ if __name__ == '__main__': input_arr = Tensor(np.random.uniform(0.0, 1.0, size=[1, 3, 299, 299]), ms.float32) export(net, input_arr, file_name=cfg.onnx_filename, file_format="ONNX") - export(net, input_arr, file_name=cfg.geir_filename, file_format="GEIR") + export(net, input_arr, file_name=cfg.air_filename, file_format="AIR") diff --git a/model_zoo/official/cv/lenet_quant/export.py b/model_zoo/official/cv/lenet_quant/export.py index 78c94f9286f6fedcf5f08991b854e696d63dfddc..b3fd007fed1f53ea36a578abed799fd7b5d0afb1 100644 --- a/model_zoo/official/cv/lenet_quant/export.py +++ b/model_zoo/official/cv/lenet_quant/export.py @@ -13,7 +13,7 @@ # limitations under the License. # ============================================================================ """ -export quantization aware training network to infer `GEIR` backend. +export quantization aware training network to infer `AIR` backend. """ import argparse @@ -53,4 +53,4 @@ if __name__ == "__main__": # export network inputs = Tensor(np.ones([1, 1, cfg.image_height, cfg.image_width]), mindspore.float32) - quant.export(network, inputs, file_name="lenet_quant", file_format='GEIR') + quant.export(network, inputs, file_name="lenet_quant", file_format='AIR') diff --git a/model_zoo/official/cv/mobilenetv2_quant/export.py b/model_zoo/official/cv/mobilenetv2_quant/export.py index 00e377cece25fa912a785e28908659668ef7eb75..f9fe15e4cf650670283736b5650782f9b85aa0d0 100644 --- a/model_zoo/official/cv/mobilenetv2_quant/export.py +++ b/model_zoo/official/cv/mobilenetv2_quant/export.py @@ -50,5 +50,5 @@ if __name__ == '__main__': # export network print("============== Starting export ==============") inputs = Tensor(np.ones([1, 3, cfg.image_height, cfg.image_width]), mindspore.float32) - quant.export(network, inputs, file_name="mobilenet_quant", file_format='GEIR') + quant.export(network, inputs, file_name="mobilenet_quant", file_format='AIR') print("============== End export ==============") diff --git a/tests/st/tbe_networks/export_geir.py b/tests/st/tbe_networks/export_geir.py index a4e6f572f57c66953310e702f8368bb3bec3cd97..ed23b6969a873ddc132f3008e2945fd22d294c52 100644 --- a/tests/st/tbe_networks/export_geir.py +++ b/tests/st/tbe_networks/export_geir.py @@ -24,4 +24,4 @@ context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") def test_resnet50_export(batch_size=1, num_classes=5): input_np = np.random.uniform(0.0, 1.0, size=[batch_size, 3, 224, 224]).astype(np.float32) net = resnet50(batch_size, num_classes) - export(net, Tensor(input_np), file_name="./me_resnet50.pb", file_format="GEIR") + export(net, Tensor(input_np), file_name="./me_resnet50.pb", file_format="AIR") diff --git a/tests/ut/python/utils/test_serialize.py b/tests/ut/python/utils/test_serialize.py index d0b19cb0c4b1635edf17c979248b09f4f988fddd..dae05e98302c32537d47cb2b6865f0c3c14e64c7 100644 --- a/tests/ut/python/utils/test_serialize.py +++ b/tests/ut/python/utils/test_serialize.py @@ -87,8 +87,12 @@ def test_save_graph(): x = Tensor(np.random.rand(2, 1, 2, 3).astype(np.float32)) y = Tensor(np.array([1.2]).astype(np.float32)) out_put = net(x, y) - _save_graph(network=net, file_name="net-graph.meta") + output_file = "net-graph.meta" + _save_graph(network=net, file_name=output_file) out_me_list.append(out_put) + assert os.path.exists(output_file) + os.chmod(output_file, stat.S_IWRITE) + os.remove(output_file) def test_save_checkpoint(): @@ -318,7 +322,8 @@ class MYNET(nn.Cell): def test_export(): net = MYNET() input_data = Tensor(np.random.randint(0, 255, [1, 3, 224, 224]).astype(np.float32)) - export(net, input_data, file_name="./me_export.pb", file_format="GEIR") + with pytest.raises(ValueError): + export(net, input_data, file_name="./me_export.pb", file_format="AIR") @non_graph_engine