提交 71843142 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!2755 unform learning rate behavior in optimizers

Merge pull request !2755 from wangnan39/uniform_lr_behavior_in_optimizers
......@@ -231,8 +231,9 @@ def cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch):
>>> cosine_decay_lr(min_lr, max_lr, total_step, step_per_epoch, decay_epoch)
[0.1, 0.1, 0.05500000000000001, 0.05500000000000001, 0.01, 0.01]
"""
validator.check_float_positive('min_lr', min_lr, None)
validator.check_float_legal_value('min_lr', min_lr, None)
if not isinstance(min_lr, float):
raise TypeError("min_lr must be float.")
validator.check_number_range("min_lr", min_lr, 0.0, float("inf"), Rel.INC_LEFT, None)
validator.check_float_positive('max_lr', max_lr, None)
validator.check_float_legal_value('max_lr', max_lr, None)
validator.check_integer('total_step', total_step, 0, Rel.GT, None)
......@@ -288,8 +289,9 @@ def polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_e
"""
validator.check_float_positive('learning_rate', learning_rate, None)
validator.check_float_legal_value('learning_rate', learning_rate, None)
validator.check_float_positive('end_learning_rate', end_learning_rate, None)
validator.check_float_legal_value('end_learning_rate', end_learning_rate, None)
if not isinstance(end_learning_rate, float):
raise TypeError("end_learning_rate must be float.")
validator.check_number_range("end_learning_rate", end_learning_rate, 0.0, float("inf"), Rel.INC_LEFT, None)
validator.check_float_positive('power', power, None)
validator.check_float_legal_value('power', power, None)
validator.check_integer('total_step', total_step, 0, Rel.GT, None)
......@@ -311,11 +313,58 @@ def polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_e
return lr
def warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch):
r"""
Get learning rate warming up.
For the i-th step, the formula of computing warmup_learning_rate[i] is:
.. math::
warmup\_learning\_rate[i] = learning\_rate * tmp\_epoch / tmp\_warmup\_epoch
Where :math:`tmp\_epoch=min(current\_epoch, warmup\_epoch),\ current\_epoch=floor(\frac{i}{step\_per\_epoch})`
Args:
learning_rate (float): The initial value of learning rate.
warmup_steps (int): The warm up steps of learning rate.
Inputs:
Tensor. The current step number.
Returns:
Tensor. The learning rate value for the current step.
Examples:
>>> learning_rate = 0.1
>>> total_step = 6
>>> step_per_epoch = 2
>>> warmup_epoch = 2
>>> warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch)
[0.0, 0.0, 0.05, 0.05, 0.1, 0.1]
"""
if not isinstance(learning_rate, float):
raise TypeError("learning_rate must be float.")
validator.check_number_range("learning_rate", learning_rate, 0.0, float("inf"), Rel.INC_LEFT, None)
validator.check_integer('warmup_epoch', warmup_epoch, 0, Rel.GT, None)
validator.check_integer('total_step', total_step, 0, Rel.GT, None)
validator.check_integer('step_per_epoch', step_per_epoch, 0, Rel.GT, None)
function = lambda x, y: (x, min(x, y))
lr = []
for i in range(total_step):
current_epoch = math.floor(i / step_per_epoch)
warmup_epoch, tmp_epoch = function(warmup_epoch, current_epoch)
lr.append(learning_rate * tmp_epoch/ warmup_epoch)
return lr
__all__ = [
'piecewise_constant_lr',
'exponential_decay_lr',
'natural_exp_decay_lr',
'inverse_decay_lr',
'cosine_decay_lr',
'polynomial_decay_lr'
'polynomial_decay_lr',
'warmup_lr'
]
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Learning rate schedule."""
import math
from ..common import dtype as mstype
from ..ops import operations as P
from .cell import Cell
from .._checkparam import Validator as validator
from .._checkparam import Rel
class LearningRateSchedule(Cell):
def __init__(self):
super(LearningRateSchedule, self).__init__()
def construct(self, global_step):
raise NotImplementedError
def _check_inputs(learning_rate, decay_rate, decay_steps, is_stair, cls_name):
validator.check_integer('decay_steps', decay_steps, 0, Rel.GT, cls_name)
validator.check_float_positive('learning_rate', learning_rate, cls_name)
validator.check_float_legal_value('learning_rate', learning_rate, cls_name)
validator.check_float_positive('decay_rate', decay_rate, cls_name)
validator.check_float_legal_value('decay_rate', decay_rate, cls_name)
validator.check_value_type('is_stair', is_stair, [bool], cls_name)
class ExponentialDecayLR(LearningRateSchedule):
r"""
Calculate learning rate base on exponential decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
.. math::
decayed\_learning\_rate[i] = learning\_rate * decay\_rate^{p}}
Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, The formula
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
Args:
learning_rate (float): The initial value of learning rate.
decay_rate (float): The decay rate.
decay_steps (int): A value used to calculate decayed learning rate.
is_stair (bool): If true, learning rate decay once every `decay_steps` times. Default: False.
Inputs:
Tensor. The current step number.
Returns:
Tensor. The learning rate value for the current step.
Examples:
>>> learning_rate = 0.1
>>> decay_rate = 0.9
>>> decay_steps = 4
>>> global_step = Tenosr(2, mstype.int32)
>>> exponential_decay_lr = ExponentialDecayLR(learning_rate, decay_rate, decay_steps)
>>> exponential_decay_lr(global_step)
"""
def __init__(self, learning_rate, decay_rate, decay_steps, is_stair=False):
super(ExponentialDecayLR, self).__init__()
_check_inputs(learning_rate, decay_rate, decay_steps, is_stair, self.cls_name)
self.learning_rate = learning_rate
self.decay_rate = decay_rate
self.decay_steps = decay_steps
self.is_stair = is_stair
self.pow = P.Pow()
self.cast = P.Cast()
def construct(self, global_step):
p = self.cast(global_step, mstype.float32) / self.decay_steps
if self.is_stair:
p = P.Floor()(p)
return self.learning_rate * self.pow(self.decay_rate, p)
class NaturalExpDecayLR(LearningRateSchedule):
r"""
Calculate learning rate base on natural exponential decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
.. math::
decayed\_learning\_rate[i] = learning\_rate * e^{-decay\_rate * p}
Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, The formula
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
Args:
learning_rate (float): The initial value of learning rate.
decay_rate (float): The decay rate.
decay_steps (int): A value used to calculate decayed learning rate.
is_stair (bool): If true, learning rate decay once every `decay_steps` times. Default: False.
Inputs:
Tensor. The current step number.
Returns:
Tensor. The learning rate value for the current step.
Examples:
>>> learning_rate = 0.1
>>> decay_rate = 0.9
>>> decay_steps = 4
>>> global_step = Tenosr(2, mstype.int32)
>>> natural_exp_decay_lr = NaturalExpDecayLR(learning_rate, decay_rate, decay_steps, True)
>>> natural_exp_decay_lr(global_step)
"""
def __init__(self, learning_rate, decay_rate, decay_steps, is_stair=False):
super(NaturalExpDecayLR, self).__init__()
_check_inputs(learning_rate, decay_rate, decay_steps, is_stair, self.cls_name)
self.learning_rate = learning_rate
self.decay_rate = decay_rate
self.decay_steps = decay_steps
self.is_stair = is_stair
self.math_e = math.e
self.pow = P.Pow()
self.cast = P.Cast()
def construct(self, global_step):
p = self.cast(global_step, mstype.float32)
if self.is_stair:
p = P.FloorDiv()(p, self.decay_steps) * self.decay_steps
return self.learning_rate * self.pow(self.math_e, -self.decay_rate * p)
class InverseDecayLR(LearningRateSchedule):
r"""
Calculate learning rate base on inverse-time decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
.. math::
decayed\_learning\_rate[i] = learning\_rate / (1 + decay\_rate * p}
Where :math:`p = \frac{current\_step}{decay\_steps}`, if `is_stair` is True, The formula
is :math:`p = floor(\frac{current\_step}{decay\_steps})`.
Args:
learning_rate (float): The initial value of learning rate.
decay_rate (float): The decay rate.
decay_epoch (int): A value used to calculate decayed learning rate.
is_stair (bool): If true, learning rate decay once every `decay_steps` times. Default: False.
Inputs:
Tensor. The current step number.
Returns:
Tensor. The learning rate value for the current step.
Examples:
>>> learning_rate = 0.1
>>> decay_rate = 0.9
>>> decay_steps = 4
>>> global_step = Tenosr(2, mstype.int32)
>>> inverse_decay_lr = InverseDecayLR(learning_rate, decay_rate, decay_steps, True)
>>> inverse_decay_lr(global_step)
"""
def __init__(self, learning_rate, decay_rate, decay_steps, is_stair=False):
super(InverseDecayLR, self).__init__()
_check_inputs(learning_rate, decay_rate, decay_steps, is_stair, self.cls_name)
self.learning_rate = learning_rate
self.decay_rate = decay_rate
self.decay_steps = decay_steps
self.is_stair = is_stair
self.cast = P.Cast()
def construct(self, global_step):
p = self.cast(global_step, mstype.float32) / self.decay_steps
if self.is_stair:
p = P.Floor()(p)
return self.learning_rate / (1 + self.decay_rate * p)
class CosineDecayLR(LearningRateSchedule):
r"""
Calculate learning rate base on cosine decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
.. math::
decayed\_learning\_rate[i] = min\_learning\_rate + 0.5 * (max\_learning\_rate - min\_learning\_rate) *
(1 + cos(\frac{current\_epoch}{decay\_epoch}\pi))
Where :math:`current\_epoch=floor(\frac{i}{step\_per\_epoch})`.
Args:
min_lr (float): The minimum value of learning rate.
max_lr (float): The maximum value of learning rate.
decay_steps (int): A value used to calculate decayed learning rate.
Inputs:
Tensor. The current step number.
Returns:
Tensor. The learning rate value for the current step.
Examples:
>>> min_lr = 0.01
>>> max_lr = 0.1
>>> decay_steps = 4
>>> global_step = Tenosr(2, mstype.int32)
>>> cosine_decay_lr = CosineDecayLR(min_lr, max_lr, decay_steps)
>>> cosine_decay_lr(global_steps)
"""
def __init__(self, min_lr, max_lr, decay_steps):
super(CosineDecayLR, self).__init__()
if not isinstance(min_lr, float):
raise TypeError("min_lr must be float.")
validator.check_number_range("min_lr", min_lr, 0.0, float("inf"), Rel.INC_LEFT, self.cls_name)
validator.check_float_positive('max_lr', max_lr, self.cls_name)
validator.check_float_legal_value('max_lr', max_lr, self.cls_name)
validator.check_integer('decay_steps', decay_steps, 0, Rel.GT, self.cls_name)
if min_lr >= max_lr:
raise ValueError('`max_lr` should be greater than `min_lr`.')
self.min_lr = min_lr
self.max_lr = max_lr
self.decay_steps = decay_steps
self.math_pi = math.pi
self.delta = 0.5 * (max_lr - min_lr)
self.cos = P.Cos()
self.min = P.Minimum()
self.cast = P.Cast()
def construct(self, global_step):
p = self.cast(self.min(global_step, self.decay_steps), mstype.float32)
return self.min_lr + self.delta * (1.0 + self.cos(self.math_pi * p / self.decay_steps))
class PolynomialDecayLR(LearningRateSchedule):
r"""
Calculate learning rate base on polynomial decay function.
For the i-th step, the formula of computing decayed_learning_rate[i] is:
.. math::
decayed\_learning\_rate[i] = (learning\_rate - end\_learning\_rate) *
(1 - tmp\_step / tmp\_decay\_step)^{power} + end\_learning\_rate
Where :math:`tmp\_step=min(global\_step, decay\_step).
If `update_decay_steps` is true, update the value of `tmp_decay_step` every `decay_steps`. The formula
is :math:`tmp\_decay\_step = decay\_step * ceil(global\_step / decay\_steps)`
Args:
learning_rate (float): The initial value of learning rate.
end_learning_rate (float): The end value of learning rate.
decay_steps (int): A value used to calculate decayed learning rate.
power (float): A value used to calculate decayed learning rate. This parameter should be greater than 0.
update_decay_steps (bool): If true, learning rate decay once every `decay_steps` times. Default: False.
Inputs:
Tensor. The current step number.
Returns:
Tensor. The learning rate value for the current step.
Examples:
>>> learning_rate = 0.1
>>> end_learning_rate = 0.01
>>> decay_steps = 4
>>> power = 0.5
>>> global_step = Tenosr(2, mstype.int32)
>>> polynomial_decay_lr = PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
>>> polynomial_decay_lr(global_step)
"""
def __init__(self, learning_rate, end_learning_rate, decay_steps, power, update_decay_steps=False):
super(PolynomialDecayLR, self).__init__()
validator.check_float_positive('learning_rate', learning_rate, None)
validator.check_float_legal_value('learning_rate', learning_rate, None)
if not isinstance(end_learning_rate, float):
raise TypeError("end_learning_rate must be float.")
validator.check_number_range("end_learning_rate", end_learning_rate, 0.0, float("inf"), Rel.INC_LEFT,
self.cls_name)
validator.check_integer('decay_steps', decay_steps, 0, Rel.GT, self.cls_name)
validator.check_value_type('update_decay_steps', update_decay_steps, [bool], self.cls_name)
validator.check_float_positive('power', power, self.cls_name)
validator.check_float_legal_value('power', power, self.cls_name)
self.decay_steps = decay_steps
self.start_learning_rate = learning_rate
self.end_learning_rate = end_learning_rate
self.diff_learning_rate = learning_rate - end_learning_rate
self.power = power
self.update_decay_steps = update_decay_steps
self.pow = P.Pow()
self.ceil = P.Ceil()
self.min = P.Minimum()
self.max = P.Maximum()
def construct(self, global_step):
tmp_global_step = P.Cast()(global_step, mstype.float32)
tmp_decay_step = self.decay_steps
if self.update_decay_steps:
tmp_decay_step = tmp_decay_step * self.max(self.ceil(tmp_global_step / tmp_decay_step), 1)
else:
tmp_global_step = self.min(tmp_global_step, tmp_decay_step)
p = tmp_global_step / tmp_decay_step
lr = self.diff_learning_rate * self.pow(1.0 - p, self.power) + self.end_learning_rate
return lr
class WarmUpLR(LearningRateSchedule):
r"""
Get learning rate warming up.
For the i-th step, the formula of computing warmup_learning_rate[i] is:
.. math::
warmup\_learning\_rate[i] = learning\_rate * tmp\_step / warmup\_steps
Where :math:`tmp\_step=min(global\_step, warmup\_steps).
Args:
learning_rate (float): The initial value of learning rate.
warmup_steps (int): The warm up steps of learning rate.
Inputs:
Tensor. The current step number.
Returns:
Tensor. The learning rate value for the current step.
Examples:
>>> learning_rate = 0.1
>>> warmup_steps = 2
>>> global_step = Tenosr(2, mstype.int32)
>>> warmup_lr = WarmUpLR(learning_rate, warmup_steps)
>>> warmup_lr(global_step)
"""
def __init__(self, learning_rate, warmup_steps):
super(WarmUpLR, self).__init__()
if not isinstance(learning_rate, float):
raise TypeError("learning_rate must be float.")
validator.check_number_range("learning_rate", learning_rate, 0.0, float("inf"), Rel.INC_LEFT, self.cls_name)
validator.check_integer('warmup_steps', warmup_steps, 0, Rel.GT, self.cls_name)
self.warmup_steps = warmup_steps
self.learning_rate = learning_rate
self.min = P.Minimum()
self.cast = P.Cast()
def construct(self, global_step):
warmup_percent = self.cast(self.min(global_step, self.warmup_steps), mstype.float32)/ self.warmup_steps
return self.learning_rate * warmup_percent
__all__ = [
'ExponentialDecayLR',
'NaturalExpDecayLR',
'InverseDecayLR',
'CosineDecayLR',
'PolynomialDecayLR',
'WarmUpLR'
]
......@@ -20,7 +20,7 @@ The optimizer is used to calculate and update the gradients.
"""
from .optimizer import Optimizer
from .momentum import Momentum
from .adam import Adam, PSAdam, AdamWeightDecay, AdamWeightDecayDynamicLR
from .adam import Adam, PSAdam, AdamWeightDecay
from .lamb import Lamb
from .sgd import SGD
from .lars import LARS
......@@ -30,4 +30,4 @@ from .proximal_ada_grad import ProximalAdagrad
from .lazyadam import LazyAdam
__all__ = ['Optimizer', 'Momentum', 'LARS', 'Adam', 'PSAdam', 'AdamWeightDecay', 'LazyAdam',
'AdamWeightDecayDynamicLR', 'Lamb', 'SGD', 'FTRL', 'PSFTRL', 'RMSProp', 'ProximalAdagrad']
'Lamb', 'SGD', 'FTRL', 'PSFTRL', 'RMSProp', 'ProximalAdagrad']
......@@ -30,9 +30,9 @@ _adam_opt = C.MultitypeFuncGraph("adam_opt")
_adam_push_pull_opt = C.MultitypeFuncGraph("_adam_push_pull_opt")
@_adam_opt.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
@_adam_opt.register("Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "Tensor", "Tensor",
"Tensor", "Bool", "Bool")
def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, param, m, v, gradient, decay_flag, optim_filter):
def _update_run_op(beta1, beta2, eps, lr, weight_decay, param, m, v, gradient, decay_flag, optim_filter):
"""
Update parameters.
......@@ -41,7 +41,7 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, param, m, v, grad
beta2 (Tensor): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0).
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
lr (Tensor): Learning rate.
weight_decay_tensor (Tensor): Weight decay. Should be in range [0.0, 1.0].
weight_decay (Number): Weight decay. Should be in range [0.0, 1.0].
param (Tensor): Parameters.
m (Tensor): m value of parameters.
v (Tensor): v value of parameters.
......@@ -73,7 +73,7 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, param, m, v, grad
update = next_m / (eps + op_sqrt(next_v))
if decay_flag:
update = op_mul(weight_decay_tensor, param_fp32) + update
update = op_mul(weight_decay, param_fp32) + update
update_with_lr = op_mul(lr, update)
next_param = param_fp32 - op_reshape(update_with_lr, op_shape(param_fp32))
......@@ -85,29 +85,6 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, param, m, v, grad
return gradient
def _check_param_value(beta1, beta2, eps, weight_decay, prim_name):
"""Check the type of inputs."""
validator.check_value_type("beta1", beta1, [float], prim_name)
validator.check_value_type("beta2", beta2, [float], prim_name)
validator.check_value_type("eps", eps, [float], prim_name)
validator.check_value_type("weight_dacay", weight_decay, [float], prim_name)
validator.check_number_range("beta1", beta1, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range("beta2", beta2, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range("eps", eps, 0.0, float("inf"), Rel.INC_NEITHER, prim_name)
validator.check_number_range("weight_decay", weight_decay, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
def _check_learning_rate_value(learning_rate, end_learning_rate, decay_steps, power, prim_name):
"""Check the type of inputs."""
validator.check_value_type("learning_rate", learning_rate, [float], prim_name)
validator.check_number_range("learning_rate", learning_rate, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
validator.check_value_type("end_learning_rate", end_learning_rate, [float], prim_name)
validator.check_number_range("end_learning_rate", end_learning_rate, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
validator.check_float_positive('power', power, prim_name)
validator.check_float_legal_value('power', power, prim_name)
validator.check_integer('decay_steps', decay_steps, 0, Rel.GT, prim_name)
@_adam_opt.register("Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "IndexedSlices",
"Tensor", "Tensor", "Tensor", "Bool")
def _run_opt_with_sparse(opt, sparse_opt, beta1_power, beta2_power, beta1, beta2, eps, lr, gradient, params,
......@@ -179,6 +156,16 @@ def _run_push_pull_opt_with_one_number(push, pull, beta1_power, beta2_power, bet
return success
def _check_param_value(beta1, beta2, eps, prim_name):
"""Check the type of inputs."""
validator.check_value_type("beta1", beta1, [float], prim_name)
validator.check_value_type("beta2", beta2, [float], prim_name)
validator.check_value_type("eps", eps, [float], prim_name)
validator.check_number_range("beta1", beta1, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range("beta2", beta2, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range("eps", eps, 0.0, float("inf"), Rel.INC_NEITHER, prim_name)
class Adam(Optimizer):
r"""
Updates gradients by Adaptive Moment Estimation (Adam) algorithm.
......@@ -202,12 +189,9 @@ class Adam(Optimizer):
:math:`\epsilon` represents `eps`.
Note:
The Adam optimizer supports separating parameter groups. Different parameter groups can set different
`learning_rate` and `weight_decay`.
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
To improve parameter groups performance, the customized order of parameters can be supported.
......@@ -232,14 +216,14 @@ class Adam(Optimizer):
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' should be in one of group parameters.
learning_rate (Union[int, float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
Iterable or a Tensor and the dims of the Tensor is 1,
use dynamic learning rate, then the i-th step will
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a
Tensor but the dims of the Tensor is 0, use fixed learning
rate. Other cases are not supported. It should be equal to
or greater than 0. Default: 1e-3.
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or graph for the learning rate.
When the learning_rate is a Iterable or a Tensor with dimension of 1, use dynamic learning rate, then
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor with
dimension of 0, use fixed learning rate. Other cases are not supported. The float learning rate should be
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
Default: 1e-3.
beta1 (float): The exponential decay rate for the 1st moment estimates. Should be in range (0.0, 1.0). Default:
0.9.
beta2 (float): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0). Default:
......@@ -272,9 +256,9 @@ class Adam(Optimizer):
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
>>> {'params': no_conv_params, 'lr': 0.01},
>>> {'order_params': net.trainable_params()}]
>>> optim = nn.Adam(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use a learning rate of default value 0.1 and a weight decay of 0.01.
>>> # The no_conv_params's parameters will use a learning rate of 0.01 and a weight decay of default value 0.0.
>>> optm = nn.Adam(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
>>> # The no_conv_params's parameters will use learning rate of 0.01 and defaule weight decay of 0.0.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
......@@ -284,7 +268,7 @@ class Adam(Optimizer):
def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False,
use_nesterov=False, weight_decay=0.0, loss_scale=1.0):
super(Adam, self).__init__(learning_rate, params, weight_decay, loss_scale)
_check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)
_check_param_value(beta1, beta2, eps, self.cls_name)
validator.check_value_type("use_locking", use_locking, [bool], self.cls_name)
validator.check_value_type("use_nesterov", use_nesterov, [bool], self.cls_name)
......@@ -329,7 +313,7 @@ class PSAdam(Optimizer):
def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False,
use_nesterov=False, weight_decay=0.0, loss_scale=1.0):
super(PSAdam, self).__init__(learning_rate, params, weight_decay, loss_scale)
_check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)
_check_param_value(beta1, beta2, eps, self.cls_name)
validator.check_value_type("use_locking", use_locking, [bool], self.cls_name)
validator.check_value_type("use_nesterov", use_nesterov, [bool], self.cls_name)
......@@ -375,82 +359,38 @@ class AdamWeightDecay(Optimizer):
"""
Implements Adam algorithm weight decay fix.
Args:
params (list[Parameter]): A list of parameter, which will be updated. The element in `params`
should be class mindspore.Parameter.
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
Iterable or a Tensor and the dims of the Tensor is 1,
use dynamic learning rate, then the i-th step will
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a Tensor
but the dims of the Tensor is 0, use fixed learning rate.
Other cases are not supported. It should be equal to or
greater than 0. Default: 1e-3.
beta1 (float): The exponential decay rate for the 1st moment estimates. Default: 0.9.
Should be in range (0.0, 1.0).
beta2 (float): The exponential decay rate for the 2nd moment estimates. Default: 0.999.
Should be in range (0.0, 1.0).
eps (float): Term added to the denominator to improve numerical stability. Default: 1e-6.
Should be greater than 0.
weight_decay (float): Weight decay (L2 penalty). It should be in range [0.0, 1.0]. Default: 0.0.
decay_filter (Function): A function to determine whether to apply weight decay on parameters. Default:
lambda x: 'LayerNorm' not in x.name and 'bias' not in x.name.
Inputs:
- **gradients** (tuple[Tensor]) - The gradients of `params`, the shape is the same as `params`.
Outputs:
tuple[bool], all elements are True.
Note:
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
weight decay is posigive. When not separating parameter groups, the `weight_decay` in the API will be applied
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
Examples:
>>> net = Net()
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = nn.AdamWeightDecay(params=net.trainable_params())
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
"""
def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0,
decay_filter=lambda x: 'beta' not in x.name and 'gamma' not in x.name):
super(AdamWeightDecay, self).__init__(learning_rate, params)
if self.is_group:
raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
_check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)
self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
self.eps = Tensor(np.array([eps]).astype(np.float32))
self.weight_decay_tensor = Tensor(np.array([weight_decay]).astype(np.float32))
To improve parameter groups performance, the customized order of parameters can be supported.
self.params = self.parameters
self.moments1 = self.params.clone(prefix="adam_m", init='zeros')
self.moments2 = self.params.clone(prefix="adam_v", init='zeros')
self.decay_flag = tuple(decay_filter(x) for x in self.params)
Args:
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
"lr", "weight_decay" and "order_params" are the keys can be parsed.
self.hyper_map = C.HyperMap()
- params: Required. The value should be a list of `Parameter`.
def construct(self, gradients):
lr = self.get_lr()
optim_result = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps, lr,
self.weight_decay_tensor),
self.params, self.moments1, self.moments2, gradients,
self.decay_flag, self.optim_filter)
if self.use_parallel:
optim_result = self.broadcast_params(optim_result)
return optim_result
- lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
If not, the `learning_rate` in the API will be used.
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
will be used. If not, the `weight_decay` in the API will be used.
class AdamWeightDecayDynamicLR(Optimizer):
"""
Adam Weight Decay Dynamic Learning Rate (LR).
- order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' should be in one of group parameters.
Args:
params (list[Parameter]): A list of parameter, which will be updated. The element in `params`
should be class mindspore.Parameter.
decay_steps (int): The steps of the decay. It must be int and positive.
warmup_steps (int): The steps of lr warm up. Default: 0.
learning_rate (float): A floating point value for the learning rate. It should be equal to or
greater than 0. Default: 0.001.
end_learning_rate (float): A floating point value for the end learning rate. It should be equal
to or greater than 0. Default: 0.0001.
power (float): The Power of the polynomial. It must be positive. Default: 10.0.
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or graph for the learning rate.
When the learning_rate is a Iterable or a Tensor with dimension of 1, use dynamic learning rate, then
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor with
dimension of 0, use fixed learning rate. Other cases are not supported. The float learning rate should be
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
Default: 1e-3.
beta1 (float): The exponential decay rate for the 1st moment estimates. Default: 0.9.
Should be in range (0.0, 1.0).
beta2 (float): The exponential decay rate for the 2nd moment estimates. Default: 0.999.
......@@ -469,71 +409,48 @@ class AdamWeightDecayDynamicLR(Optimizer):
Examples:
>>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay
>>> optim = nn.AdamWeightDecay(params=net.trainable_params())
>>>
>>> #2) Use parameter groups and set different values
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
>>> {'params': no_conv_params, 'lr': 0.01},
>>> {'order_params': net.trainable_params()}]
>>> optim = nn.AdamWeightDecay(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
>>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = nn.AdamWeightDecayDynamicLR(params=net.trainable_params(), decay_steps=10)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
>>> model = Model(net, loss_fn=loss, optimizer=optim)
"""
def __init__(self,
params,
decay_steps,
warmup_steps=0,
learning_rate=0.001,
end_learning_rate=0.0001,
power=10.0,
beta1=0.9,
beta2=0.999,
eps=1e-6,
weight_decay=0.0,
decay_filter=lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()):
super(AdamWeightDecayDynamicLR, self).__init__(0.0, params)
if self.is_group:
raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
_check_param_value(beta1, beta2, eps, weight_decay, self.cls_name)
_check_learning_rate_value(learning_rate, end_learning_rate, decay_steps, power, self.cls_name)
validator.check_integer('warmup_steps', warmup_steps, 0, Rel.GE, self.cls_name)
# turn them to scalar when me support scalar/tensor mix operations
self.global_step = Parameter(initializer(0, [1]), name="global_step")
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
self.warmup_flag = False
if warmup_steps > 0:
self.warmup_flag = True
self.decay_steps = Tensor(np.array([decay_steps]).astype(np.float32))
self.end_learning_rate = Tensor(np.array([end_learning_rate]).astype(np.float32))
self.diff_learning_rate = Tensor(np.array([learning_rate - end_learning_rate]).astype(np.float32))
self.power = power
def __init__(self, params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0):
super(AdamWeightDecay, self).__init__(learning_rate, params, weight_decay)
_check_param_value(beta1, beta2, eps, self.cls_name)
self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
self.eps = Tensor(np.array([eps]).astype(np.float32))
self.weight_decay_tensor = Tensor(np.array([weight_decay]).astype(np.float32))
self.params = self.parameters
self.moments1 = self.params.clone(prefix="adam_m", init='zeros')
self.moments2 = self.params.clone(prefix="adam_v", init='zeros')
self.decay_flag = tuple(decay_filter(x) for x in self.params)
self.moments1 = self.parameters.clone(prefix="adam_m", init='zeros')
self.moments2 = self.parameters.clone(prefix="adam_v", init='zeros')
self.hyper_map = C.HyperMap()
self.min = P.Minimum()
self.pow = P.Pow()
self.greater = P.Greater()
self.one = Tensor(np.array([1.0]).astype(np.float32))
self.cast = P.Cast()
self.start_learning_rate = Tensor(np.array([learning_rate]).astype(np.float32))
def construct(self, gradients):
step = self.min(self.global_step, self.decay_steps)
p = step / self.decay_steps
lr = self.diff_learning_rate * self.pow(self.one - p, self.power) + self.end_learning_rate
if self.warmup_flag:
warmup_percent = self.global_step / self.warmup_steps
warmup_lr = self.start_learning_rate * warmup_percent
is_warmup = self.cast(self.greater(self.warmup_steps, self.global_step), mstype.float32)
lr = (self.one - is_warmup) * lr + is_warmup * warmup_lr
optim_result = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps, lr,
self.weight_decay_tensor),
self.params, self.moments1, self.moments2, gradients,
self.decay_flag, self.optim_filter)
lr = self.get_lr()
if self.is_group:
if self.is_group_lr:
optim_result = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps),
lr, self.weight_decay, self.parameters, self.moments1, self.moments2,
gradients, self.decay_flags, self.optim_filter)
else:
optim_result = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps, lr),
self.weight_decay, self.parameters, self.moments1, self.moments2,
gradients, self.decay_flags, self.optim_filter)
else:
optim_result = self.hyper_map(F.partial(_adam_opt, self.beta1, self.beta2, self.eps, lr, self.weight_decay),
self.parameters, self.moments1, self.moments2,
gradients, self.decay_flags, self.optim_filter)
if self.use_parallel:
optim_result = self.broadcast_params(optim_result)
added_global_step = self.global_step + self.one
F.control_depend(lr, added_global_step)
self.global_step = added_global_step
return optim_result
......@@ -24,9 +24,9 @@ _ftrl_opt = C.MultitypeFuncGraph("ftrl_opt")
_ftrl_push_pull_opt = C.MultitypeFuncGraph("ftrl_opt")
@_ftrl_opt.register("Function", "Function", "Tensor", "Number", "Number", "Number", "Tensor", "IndexedSlices", "Tensor",
@_ftrl_opt.register("Function", "Function", "Number", "Number", "Number", "Tensor", "Tensor", "IndexedSlices", "Tensor",
"Tensor", "Bool")
def _tensor_run_opt_with_sparse(opt, spars_opt, learning_rate, l1, l2, lr_power, linear, gradient, weight, moment,
def _tensor_run_opt_with_sparse(opt, spars_opt, l1, l2, lr_power, learning_rate, linear, gradient, weight, moment,
ps_parameter):
"""Apply sparse ftrl optimizer to the weight parameter when the gradient is sparse."""
success = True
......@@ -43,9 +43,9 @@ def _tensor_run_opt_with_sparse(opt, spars_opt, learning_rate, l1, l2, lr_power,
return success
@_ftrl_opt.register("Function", "Function", "Tensor", "Number", "Number", "Number", "Tensor", "Tensor", "Tensor",
@_ftrl_opt.register("Function", "Function", "Number", "Number", "Number", "Tensor", "Tensor", "Tensor", "Tensor",
"Tensor", "Bool")
def _tensor_run_opt(opt, spars_opt, learning_rate, l1, l2, lr_power, linear, gradient, weight, moment, ps_parameter):
def _tensor_run_opt(opt, spars_opt, l1, l2, lr_power, learning_rate, linear, gradient, weight, moment, ps_parameter):
"""Apply ftrl optimizer to the weight parameter."""
success = True
if ps_parameter:
......@@ -83,7 +83,7 @@ def _tensor_run_push_pull_opt_with_one_number(push, pull, learning_rate, l1, l2,
return success
def _check_param(initial_accum, lr_power, l1, l2, use_locking, weight_decay=0.0, prim_name=None):
def _check_param(initial_accum, lr_power, l1, l2, use_locking, prim_name=None):
"""Check param."""
validator.check_value_type("initial_accum", initial_accum, [float], prim_name)
validator.check_number("initial_accum", initial_accum, 0.0, Rel.GE, prim_name)
......@@ -99,9 +99,6 @@ def _check_param(initial_accum, lr_power, l1, l2, use_locking, weight_decay=0.0,
validator.check_value_type("use_locking", use_locking, [bool], prim_name)
validator.check_value_type("weight_decay", weight_decay, [float], prim_name)
validator.check_number("weight_decay", weight_decay, 0.0, Rel.GE, prim_name)
class FTRL(Optimizer):
"""
......@@ -113,15 +110,34 @@ class FTRL(Optimizer):
<https://www.eecs.tufts.edu/~dsculley/papers/ad-click-prediction.pdf>`_ for engineering document.
Note:
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
on all of the parameters.
To improve parameter groups performance, the customized order of parameters can be supported.
The sparse strategy is applied while the SparseGatherV2 operator being used for forward network.
The sparse feature is under continuous development. The sparse
behavior is currently performed on the CPU.
The sparse feature is under continuous development. The sparse behavior is currently performed on the CPU.
Args:
params (list[Parameter]): A list of parameter, which will be updated. The element in `params`
should be Parameter.
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
"lr", "weight_decay" and "order_params" are the keys can be parsed.
- params: Required. The value should be a list of `Parameter`.
- lr: Using different learning rate by separating parameters is currently not supported.
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
will be used. If not, the `weight_decay` in the API will be used.
- order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' should be in one of group parameters.
initial_accum (float): The starting value for accumulators, must be zero or positive values. Default: 0.1.
learning_rate (float): The learning rate value, should be positive. Default: 0.001.
learning_rate (float): The learning rate value, should be zero or positive, dynamic learning rate is currently
not supported. Default: 0.001.
lr_power (float): Learning rate power controls how the learning rate decreases during training, must be less
than or equal to zero. Use fixed learning rate if lr_power is zero. Default: -0.5.
l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: 0.0.
......@@ -139,23 +155,36 @@ class FTRL(Optimizer):
Examples:
>>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay
>>> optim = nn.FTRL(params=net.trainable_params())
>>>
>>> #2) Use parameter groups and set different values
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
>>> {'params': no_conv_params},
>>> {'order_params': net.trainable_params()}]
>>> optim = nn.FTRL(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use weight decay of 0.01.
>>> # The no_conv_params's parameters will use default weight decay of 0.0.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> opt = nn.FTRL(net.trainable_params())
>>> model = Model(net, loss_fn=loss, optimizer=opt, metrics=None)
>>> model = Model(net, loss_fn=loss, optimizer=optim)
"""
def __init__(self, params, initial_accum=0.1, learning_rate=0.001, lr_power=-0.5, l1=0.0, l2=0.0,
use_locking=False, loss_scale=1.0, weight_decay=0.0):
super(FTRL, self).__init__(learning_rate, params, loss_scale=loss_scale)
if self.is_group:
raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
_check_param(initial_accum, lr_power, l1, l2, use_locking, weight_decay, self.cls_name)
super(FTRL, self).__init__(learning_rate, params, weight_decay, loss_scale=loss_scale)
if self.dynamic_lr or self.is_group_lr:
raise ValueError('Dynamic learning rate or group learning rate is currently not supported.')
_check_param(initial_accum, lr_power, l1, l2, use_locking, self.cls_name)
self.moments = self.parameters.clone(prefix="moments", init=initial_accum)
self.linear = self.parameters.clone(prefix="linear", init='zeros')
self.l1 = l1
self.l2 = l2
self.lr_power = lr_power
self.weight_decay = weight_decay
self.decay_tf = tuple((lambda: True)() for x in self.parameters)
if not self.is_group:
self.decay_flags = tuple((lambda: True)() for x in self.parameters)
self.hyper_map = C.HyperMap()
self.opt = P.ApplyFtrl(use_locking=use_locking)
self.sparse_opt = P.FusedSparseFtrl(learning_rate, l1, l2, lr_power, use_locking=use_locking)
......@@ -164,12 +193,11 @@ class FTRL(Optimizer):
params = self.parameters
moments = self.moments
linear = self.linear
lr = self.learning_rate
if self.weight_decay > 0.0:
grads = self.map_(F.partial(_apply_decay, self.weight_decay), self.decay_tf, params, grads)
grads = self.decay_weight(grads)
grads = self.scale_grad(grads)
success = self.map_(F.partial(_ftrl_opt, self.opt, self.sparse_opt, lr, self.l1, self.l2, self.lr_power),
lr = self.get_lr()
success = self.map_(F.partial(_ftrl_opt, self.opt, self.sparse_opt, self.l1, self.l2, self.lr_power, lr),
linear, grads, params, moments, self.ps_parameters)
return success
......@@ -180,7 +208,7 @@ class PSFTRL(Optimizer):
super(PSFTRL, self).__init__(learning_rate, params, loss_scale=loss_scale)
if self.is_group:
raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
_check_param(initial_accum, lr_power, l1, l2, use_locking, weight_decay, self.cls_name)
_check_param(initial_accum, lr_power, l1, l2, use_locking, self.cls_name)
self.moments = self.parameters.clone(prefix="moments", init=initial_accum)
self.linear = self.parameters.clone(prefix="linear", init='zeros')
self.l1 = l1
......
......@@ -32,10 +32,9 @@ num_one = Tensor(np.ones([1]), mstype.float32)
_lamb_opt = C.MultitypeFuncGraph("lamb_opt")
@_lamb_opt.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
@_lamb_opt.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Number", "Tensor", "Tensor", "Tensor",
"Tensor", "Bool", "Bool")
def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, global_step, param, m, v,
gradient, decay_flag, optim_filter):
def _update_run_op(beta1, beta2, eps, global_step, lr, weight_decay, param, m, v, gradient, decay_flag, optim_filter):
"""
Update parameters.
......@@ -44,7 +43,7 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, global_step, para
beta2 (Tensor): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0).
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
lr (Tensor): Learning rate.
weight_decay_tensor (Tensor): Weight decay. Should be in range [0.0, 1.0].
weight_decay (Number): Weight decay. Should be in range [0.0, 1.0].
global_step (Tensor): Global step.
param (Tensor): Parameters.
m (Tensor): m value of parameters.
......@@ -87,7 +86,7 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, global_step, para
w_norm = op_norm(param_fp32)
g_norm = op_norm(gradient_fp32)
g_norm_hat = op_norm(op_mul(next_mm, op_rsqrt(next_vv + eps)) + weight_decay_tensor * param_fp32)
g_norm_hat = op_norm(op_mul(next_mm, op_rsqrt(next_vv + eps)) + weight_decay * param_fp32)
zeros = F.zeros_like(w_norm)
ones = op_fill(op_dtype(w_norm), op_shape(w_norm), 1.0)
trust_ratio = op_select(
......@@ -99,7 +98,7 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, global_step, para
update = next_mm / (op_sqrt(next_vv) + eps)
if decay_flag:
update = update + op_mul(weight_decay_tensor, param_fp32)
update = update + op_mul(weight_decay, param_fp32)
update_with_lr = op_mul(op_mul(trust_ratio, lr), update)
......@@ -116,10 +115,9 @@ def _update_run_op(beta1, beta2, eps, lr, weight_decay_tensor, global_step, para
lamb_opt_graph_kernel = C.MultitypeFuncGraph("lamb_opt_graph_kernel")
@lamb_opt_graph_kernel.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor",
@lamb_opt_graph_kernel.register("Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Number",
"Tensor", "Tensor", "Tensor", "Tensor", "Bool")
def _update_run_op_graph_kernel(beta1, beta2, eps, lr, weight_decay_tensor,
global_step, param, m, v, gradient, decay_flag):
def _update_run_op_graph_kernel(beta1, beta2, eps, global_step, lr, weight_decay, param, m, v, gradient, decay_flag):
"""
Update parameters.
......@@ -128,7 +126,7 @@ def _update_run_op_graph_kernel(beta1, beta2, eps, lr, weight_decay_tensor,
beta2 (Tensor): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0).
eps (Tensor): Term added to the denominator to improve numerical stability. Should be greater than 0.
lr (Tensor): Learning rate.
weight_decay_tensor (Tensor): Weight decay. Should be in range [0.0, 1.0].
weight_decay (Number): Weight decay. Should be in range [0.0, 1.0].
global_step (Tensor): Global step.
param (Tensor): Parameters.
m (Tensor): m value of parameters.
......@@ -157,11 +155,10 @@ def _update_run_op_graph_kernel(beta1, beta2, eps, lr, weight_decay_tensor,
i6 = op_cast(num_one, mstype.float32) - op_pow(beta1, i6_ex)
i3 = op_cast(num_one, mstype.float32) - op_pow(beta2, i6_ex)
i1 = op_square(gradient_fp32)
add3, update = G.LambNextMV()(i1, v, i3, gradient, m, i6, param, beta1,
i9, beta2, x1, weight_decay_tensor, eps)
add3, update = G.LambNextMV()(i1, v, i3, gradient, m, i6, param, beta1, i9, beta2, x1, weight_decay, eps)
if decay_flag:
update = update + op_mul(weight_decay_tensor, param_fp32)
update = update + op_mul(weight_decay, param_fp32)
w_norm = op_norm(param_fp32)
g_norm = op_norm(gradient_fp32)
......@@ -171,38 +168,18 @@ def _update_run_op_graph_kernel(beta1, beta2, eps, lr, weight_decay_tensor,
ones = op_fill(op_dtype(w_norm), op_shape(w_norm), 1.0)
tens = op_fill(op_dtype(w_norm), op_shape(w_norm), 10.0)
next_param = G.LambUpdateWithLR()(g_norm, w_norm, g_norm_hat, lr, update,
param, zeros, ones, tens)
next_param = G.LambUpdateWithLR()(g_norm, w_norm, g_norm_hat, lr, update, param, zeros, ones, tens)
next_v = F.control_depend(add3, next_param)
return next_v
def _check_param_value(decay_steps, warmup_steps, start_learning_rate,
end_learning_rate, power, beta1, beta2, eps, weight_decay, prim_name):
"""Check the type of inputs."""
validator.check_value_type("start_learning_rate", start_learning_rate, [float], prim_name)
validator.check_number_range("start_learning_rate rate", start_learning_rate, 0.0, float("inf"), Rel.INC_LEFT,
prim_name)
validator.check_value_type("end_learning_rate", end_learning_rate, [float], prim_name)
validator.check_number_range("end_learning_rate", end_learning_rate, 0.0, float("inf"), Rel.INC_LEFT,
prim_name)
validator.check_float_positive('power', power, prim_name)
validator.check_float_legal_value('power', power, prim_name)
validator.check_integer('decay_steps', decay_steps, 0, Rel.GT, prim_name)
validator.check_integer('warmup_steps', warmup_steps, 0, Rel.GE, prim_name)
def _check_param_value(beta1, beta2, eps, prim_name):
validator.check_value_type("beta1", beta1, [float], prim_name)
validator.check_value_type("beta2", beta2, [float], prim_name)
validator.check_value_type("eps", eps, [float], prim_name)
validator.check_value_type(
"weight_dacay", weight_decay, [float], prim_name)
validator.check_number_range(
"beta1", beta1, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range(
"beta2", beta2, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range(
"eps", eps, 0.0, float("inf"), Rel.INC_NEITHER, prim_name)
validator.check_number_range(
"weight_decay", weight_decay, 0.0, float("inf"), Rel.INC_LEFT, prim_name)
validator.check_number_range("beta1", beta1, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range("beta2", beta2, 0.0, 1.0, Rel.INC_NEITHER, prim_name)
validator.check_number_range("eps", eps, 0.0, float("inf"), Rel.INC_NEITHER, prim_name)
class Lamb(Optimizer):
......@@ -213,16 +190,37 @@ class Lamb(Optimizer):
optimization technique. Refer to the paper `LARGE BATCH OPTIMIZATION FOR DEEP LEARNING: TRAINING BERT IN 76
MINUTES <https://arxiv.org/abs/1904.00962>`_.
Note:
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
To improve parameter groups performance, the customized order of parameters can be supported.
Args:
params (list[Parameter]): A list of parameter, which will be updated. The element in `params`
should be class mindspore.Parameter.
decay_steps (int): The steps of the lr decay. Should be equal to or greater than 1.
warmup_steps (int): The steps of lr warm up. Should be equal to or greater than 0. Default: 0.
start_learning_rate (float): A floating point value for the learning rate. Should be equal to
or greater than 0. Default: 0.1.
end_learning_rate (float): A floating point value for the end learning rate. Should be equal to
or greater than 0. Default: 0.0001.
power (float): The power of the polynomial. It must be positive. Default: 1.0.
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
"lr", "weight_decay" and "order_params" are the keys can be parsed.
- params: Required. The value should be a list of `Parameter`.
- lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
If not, the `learning_rate` in the API will be used.
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
will be used. If not, the `weight_decay` in the API will be used.
- order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' should be in one of group parameters.
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or graph for the learning rate.
When the learning_rate is a Iterable or a Tensor with dimension of 1, use dynamic learning rate, then
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor with
dimension of 0, use fixed learning rate. Other cases are not supported. The float learning rate should be
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
beta1 (float): The exponential decay rate for the 1st moment estimates. Default: 0.9.
Should be in range (0.0, 1.0).
beta2 (float): The exponential decay rate for the 2nd moment estimates. Default: 0.999.
......@@ -241,90 +239,84 @@ class Lamb(Optimizer):
Examples:
>>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay
>>> optim = nn.Lamb(params=net.trainable_params())
>>>
>>> #2) Use parameter groups and set different values
>>> poly_decay_lr = learning_rate_schedule.PolynomialDecayLR()
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
>>> {'params': no_conv_params, 'lr': poly_decay_lr},
>>> {'order_params': net.trainable_params(0.01, 0.0001, 10, 0.5)}]
>>> optim = nn.Lamb(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
>>> # The no_conv_params's parameters will use dynamic learning rate of poly decay learning rate and default
>>> # weight decay of 0.0.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> optim = nn.Lamb(params=net.trainable_params(), decay_steps=10)
>>> model = Model(net, loss_fn=loss, optimizer=optim, metrics=None)
>>> model = Model(net, loss_fn=loss, optimizer=optim)
"""
def __init__(self,
params,
decay_steps,
warmup_steps=0,
start_learning_rate=0.1,
end_learning_rate=0.0001,
power=1.0,
beta1=0.9,
beta2=0.999,
eps=1e-6,
weight_decay=0.0,
decay_filter=lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()):
super(Lamb, self).__init__(0.0, params)
if self.is_group:
raise RuntimeError(
f"The {self.cls_name} optimizer cannot support group setting.")
_check_param_value(decay_steps, warmup_steps, start_learning_rate, end_learning_rate,
power, beta1, beta2, eps, weight_decay, self.cls_name)
def __init__(self, params, learning_rate, beta1=0.9, beta2=0.999, eps=1e-6, weight_decay=0.0):
super(Lamb, self).__init__(learning_rate, params, weight_decay)
_check_param_value(beta1, beta2, eps, self.cls_name)
# turn them to scalar when me support scalar/tensor mix operations
self.global_step = Parameter(initializer(0, [1]), name="global_step")
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
self.warmup_flag = False
if warmup_steps > 0:
self.warmup_flag = True
self.decay_steps = Tensor(np.array([decay_steps]).astype(np.float32))
self.start_learning_rate = Tensor(
np.array([start_learning_rate]).astype(np.float32))
self.end_learning_rate = Tensor(
np.array([end_learning_rate]).astype(np.float32))
self.diff_learning_rate = Tensor(
np.array([start_learning_rate - end_learning_rate]).astype(np.float32))
self.power = power
self.beta1 = Tensor(np.array([beta1]).astype(np.float32))
self.beta2 = Tensor(np.array([beta2]).astype(np.float32))
self.eps = Tensor(np.array([eps]).astype(np.float32))
self.weight_decay_tensor = Tensor(
np.array([weight_decay]).astype(np.float32))
self.params = self.parameters
self.moments1 = self.params.clone(prefix="lamb_m", init='zeros')
self.moments2 = self.params.clone(prefix="lamb_v", init='zeros')
self.decay_flag = tuple(decay_filter(x) for x in self.params)
if not self.dynamic_lr:
self.global_step = Parameter(initializer(0, [1]), name='global_step')
self.assignadd = P.AssignAdd()
self.hyper_map = C.HyperMap()
self.min = P.Minimum()
self.pow = P.Pow()
self.greater = P.Greater()
self.one = Tensor(np.array([1.0]).astype(np.float32))
self.cast = P.Cast()
self.enable_graph_kernel = context.get_context("enable_graph_kernel")
def construct(self, gradients):
step = self.min(self.global_step, self.decay_steps)
p = step / self.decay_steps
lr = self.diff_learning_rate * \
self.pow(self.one - p, self.power) + self.end_learning_rate
if self.warmup_flag:
warmup_percent = self.global_step / self.warmup_steps
warmup_lr = self.start_learning_rate * warmup_percent
is_warmup = self.cast(self.greater(
self.warmup_steps, self.global_step), mstype.float32)
lr = (self.one - is_warmup) * lr + is_warmup * warmup_lr
lr = self.get_lr()
if self.enable_graph_kernel:
optim_result = self.hyper_map(F.partial(lamb_opt_graph_kernel,
self.beta1, self.beta2, self.eps, lr,
self.weight_decay_tensor, self.global_step),
self.params, self.moments1, self.moments2, gradients, self.decay_flag)
if self.is_group:
if self.is_group_lr:
optim_result = self.hyper_map(F.partial(lamb_opt_graph_kernel, self.beta1, self.beta2, self.eps,
self.global_step),
lr, self.weight_decay, self.params, self.moments1, self.moments2,
gradients, self.decay_flags)
else:
optim_result = self.hyper_map(F.partial(lamb_opt_graph_kernel, self.beta1, self.beta2, self.eps,
self.global_step, lr),
self.weight_decay, self.params, self.moments1, self.moments2,
gradients, self.decay_flags)
else:
optim_result = self.hyper_map(F.partial(_lamb_opt,
self.beta1, self.beta2, self.eps, lr,
self.weight_decay_tensor, self.global_step),
optim_result = self.hyper_map(F.partial(lamb_opt_graph_kernel, self.beta1, self.beta2, self.eps,
self.global_step, lr, self.weight_decay),
self.params, self.moments1, self.moments2, gradients, self.decay_flags)
else:
if self.is_group:
if self.is_group_lr:
optim_result = self.hyper_map(F.partial(_lamb_opt, self.beta1, self.beta2, self.eps,
self.global_step),
lr, self.weight_decay, self.params, self.moments1, self.moments2,
gradients, self.decay_flags, self.optim_filter)
else:
optim_result = self.hyper_map(F.partial(_lamb_opt, self.beta1, self.beta2, self.eps,
self.global_step, lr),
self.weight_decay, self.params, self.moments1, self.moments2,
gradients, self.decay_flags, self.optim_filter)
else:
optim_result = self.hyper_map(F.partial(_lamb_opt, self.beta1, self.beta2, self.eps,
self.global_step, lr, self.weight_decay),
self.params, self.moments1, self.moments2, gradients,
self.decay_flag, self.optim_filter)
self.decay_flags, self.optim_filter)
if self.use_parallel:
optim_result = self.broadcast_params(optim_result)
added_global_step = self.global_step + self.one
F.control_depend(lr, added_global_step)
self.global_step = added_global_step
if not self.dynamic_lr:
F.control_depend(lr, self.assignadd(self.global_step, 1))
return optim_result
......@@ -38,14 +38,14 @@ def _tensor_run_opt(lars, learning_rate, weight_decay, gradient, weight, decay_f
return gradient
def _check_param_value(optimizer, epsilon, coefficient, use_clip, prim_name):
validator.check_value_type("optimizer", optimizer, Optimizer, prim_name)
if "Adam" in optimizer.cls_name or "Lamb" in optimizer.cls_name:
raise TypeError("LARS can not be used with ", optimizer.cls_name)
validator.check_value_type("epsilon", epsilon, [float], prim_name)
validator.check_value_type("coefficient", coefficient, [float], prim_name)
validator.check_value_type("use_clip", use_clip, [bool], prim_name)
class LARS(Optimizer):
"""
Implements the LARS algorithm with LARSUpdate Operator.
......@@ -81,45 +81,71 @@ class LARS(Optimizer):
super(LARS, self).__init__(0.0, [Parameter(Tensor(0.0), name="fake_param")])
_check_param_value(optimizer, epsilon, coefficient, use_clip, self.cls_name)
self.opt = optimizer
self.parameters = optimizer.parameters
self.use_clip = use_clip
self.lars_flag = tuple(lars_filter(x) for x in self.parameters)
self.is_group = optimizer.is_group
self.learning_rate = Parameter(Tensor(0.0, dtype=mstype.float32), name="fake_lr")
self.decay_flags = optimizer.decay_flags
self.reciprocal_scale = optimizer.reciprocal_scale
self.hyper_map = C.HyperMap()
self.lars = P.LARSUpdate(epsilon, coefficient, use_clip)
self.cast = P.Cast()
self.parameters = optimizer.parameters
if use_clip is True:
self.learning_rate = optimizer.learning_rate
if use_clip:
self.is_group_lr = optimizer.is_group_lr
self.dynamic_lr = optimizer.dynamic_lr
self.gather = optimizer.gather
self.assignadd = optimizer.assignadd
self.origin_learning_rate = optimizer.learning_rate
self.global_step = optimizer.global_step
else:
self.learning_rate = Parameter(Tensor(0.0, dtype=mstype.float32), name="fake_lr")
self.reciprocal_scale = optimizer.reciprocal_scale
optimizer.reciprocal_scale = 1.0
self.is_group = optimizer.is_group
if self.is_group_lr and self.dynamic_lr:
raise ValueError('Grouped dynamic learning rate is currently not supported for the inputs optimizer ' \
'of lars.')
if self.is_group:
self.weight_decay = tuple(map(lambda x: x / optimizer.loss_scale, optimizer.weight_decay))
optimizer.weight_decay = tuple(map(lambda x: 0.0, optimizer.weight_decay))
else:
self.weight_decay = optimizer.weight_decay / optimizer.loss_scale
optimizer.exec_weight_decay = False
optimizer.weight_decay = 0.0
self.decay_flags = optimizer.decay_flags
self.lars_flag = tuple(lars_filter(x) for x in self.parameters)
self.hyper_map = C.HyperMap()
optimizer.decay_flags = tuple(map(lambda x: False, self.decay_flags))
optimizer.reciprocal_scale = 1.0
optimizer.exec_weight_decay = False
def _get_lr(self):
"""Get the learning rate of current step."""
lr = self.origin_learning_rate
if self.dynamic_lr:
if self.is_group_lr:
lr = ()
for learning_rate in self.origin_learning_rate:
current_dynamic_lr = learning_rate(self.global_step)
lr += (current_dynamic_lr,)
else:
lr = self.origin_learning_rate(self.global_step)
return lr
def construct(self, gradients):
params = self.parameters
if self.dynamic_lr:
lr = self.gather(self.learning_rate, self.global_step, 0)
F.control_depend(lr, self.assignadd(self.global_step, 1))
if self.use_clip:
lr = self._get_lr()
else:
lr = self.learning_rate
if self.reciprocal_scale != 1.0:
gradients = self.hyper_map(F.partial(_grad_scale, self.reciprocal_scale), gradients)
if self.is_group:
grad_t = self.hyper_map(F.partial(_lars_opt, self.lars, lr), self.weight_decay,
if self.is_group_lr:
gradients = self.hyper_map(F.partial(_lars_opt, self.lars), lr, self.weight_decay,
gradients, params, self.decay_flags, self.lars_flag)
else:
gradients = self.hyper_map(F.partial(_lars_opt, self.lars, lr), self.weight_decay,
gradients, params, self.decay_flags, self.lars_flag)
else:
grad_t = self.hyper_map(F.partial(_lars_opt, self.lars, lr, self.weight_decay),
gradients = self.hyper_map(F.partial(_lars_opt, self.lars, lr, self.weight_decay),
gradients, params, self.decay_flags, self.lars_flag)
success = self.opt(grad_t)
success = self.opt(gradients)
return success
......@@ -84,12 +84,11 @@ class LazyAdam(Optimizer):
:math:`\epsilon` represents `eps`.
Note:
The LazyAdam optimizer supports separating parameter groups. Different parameter groups can set different
`learning_rate` and `weight_decay`.
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
To improve parameter groups performance, the customized order of parameters can be supported.
The sparse strategy is applied while the SparseGatherV2 operator being used for forward network.
The sparse behavior, to be notice, is not equivalent to the
......@@ -113,13 +112,14 @@ class LazyAdam(Optimizer):
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' should be in one of group parameters.
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
Iterable or a Tensor and the dims of the Tensor is 1,
use dynamic learning rate, then the i-th step will
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a Tensor
but the dims of the Tensor is 0, use fixed learning rate.
Other cases are not supported. Default: 1e-3.
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or graph for the learning rate.
When the learning_rate is a Iterable or a Tensor with dimension of 1, use dynamic learning rate, then
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor with
dimension of 0, use fixed learning rate. Other cases are not supported. The float learning rate should be
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
Default: 1e-3.
beta1 (float): The exponential decay rate for the 1st moment estimates. Should be in range (0.0, 1.0). Default:
0.9.
beta2 (float): The exponential decay rate for the 2nd moment estimates. Should be in range (0.0, 1.0). Default:
......@@ -153,9 +153,9 @@ class LazyAdam(Optimizer):
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
>>> {'params': no_conv_params, 'lr': 0.01},
>>> {'order_params': net.trainable_params()}]
>>> optim = nn.LazyAdam(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use a learning rate of default value 0.1 and a weight decay of 0.01.
>>> # The no_conv_params's parameters will use a learning rate of 0.01 and a weight decay of default value 0.0.
>>> opt = nn.LazyAdam(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
>>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
......
......@@ -47,12 +47,9 @@ class Momentum(Optimizer):
Refer to the paper on the importance of initialization and momentum in deep learning for more details.
Note:
The Momentum optimizer supports separating parameter groups. Different parameter groups can set different
`learning_rate` and `weight_decay`.
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
To improve parameter groups performance, the customized order of parameters can be supported.
......@@ -73,14 +70,13 @@ class Momentum(Optimizer):
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' should be in one of group parameters.
learning_rate (Union[int, float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
Iterable or a Tensor and the dims of the Tensor is 1,
use dynamic learning rate, then the i-th step will
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a
Tensor but the dims of the Tensor is 0, use fixed learning
rate. Other cases are not supported. It should be equal to
or greater than 0.0.
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or graph for the learning rate.
When the learning_rate is a Iterable or a Tensor with dimension of 1, use dynamic learning rate, then
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor with
dimension of 0, use fixed learning rate. Other cases are not supported. The float learning rate should be
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
momentum (float): Hyperparameter of type float, means momentum for the moving average.
It should be at least 0.0.
weight_decay (int, float): Weight decay (L2 penalty). It should be in range [0.0, 1.0]. Default: 0.0.
......
......@@ -20,6 +20,7 @@ import numpy as np
import mindspore
from mindspore.ops import functional as F, composite as C, operations as P
from mindspore.nn.cell import Cell
from mindspore.nn.layer.container import CellList
from mindspore.common.parameter import Parameter, ParameterTuple
from mindspore.common.initializer import initializer
from mindspore.common.tensor import Tensor, IndexedSlices
......@@ -30,6 +31,7 @@ from mindspore import log as logger
from mindspore.parallel._utils import _get_global_rank, _get_device_num, _get_parallel_mode
from mindspore.train.parallel_utils import ParallelMode
from mindspore import context
from mindspore.nn.learning_rate_schedule import LearningRateSchedule
__all__ = ['Optimizer']
......@@ -44,25 +46,22 @@ class Optimizer(Cell):
This class defines the API to add Ops to train a model. Never use
this class directly, but instead instantiate one of its subclasses.
Some optimizers support separating parameter groups. Different parameter groups can set different
`learning_rate` and `weight_decay`.
Different parameter groups can set different `learning_rate` and `weight_decay`.
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
weight_decay is positive. For most optimizer, when not separating parameters, the `weight_decay` in the API will
be applied on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
To improve parameter groups performance, the customized order of parameters can be supported.
Args:
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
Iterable or a Tensor and the dims of the Tensor is 1,
use dynamic learning rate, then the i-th step will
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a Tensor
but the dims of the Tensor is 0, use fixed learning rate.
Other cases are not supported. It should be equal to or greater
than 0. If the type of `learning_rate` input is int, it will be
converted to float.
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or graph for the learning
rate. When the learning_rate is a Iterable or a Tensor with dimension of 1, use dynamic learning rate, then
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor with
dimension of 0, use fixed learning rate. Other cases are not supported. The float learning rate should be
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
parameters (Union[list[Parameter], list[dict]]): When the `parameters` is a list of `Parameter` which will be
updated, the element in `parameters` should be class `Parameter`. When the `parameters` is a list of `dict`,
the "params", "lr", "weight_decay" and "order_params" are the keys can be parsed.
......@@ -104,32 +103,17 @@ class Optimizer(Cell):
loss_scale = float(loss_scale)
validator.check_value_type("loss_scale", loss_scale, [float], self.cls_name)
validator.check_number_range("loss_scale", loss_scale, 1.0, float("inf"), Rel.INC_LEFT, self.cls_name)
self.loss_scale = loss_scale
if isinstance(weight_decay, int):
weight_decay = float(weight_decay)
validator.check_value_type("weight_decay", weight_decay, [float], self.cls_name)
validator.check_number_range("weight_decay", weight_decay, 0.0, 1.0, Rel.INC_BOTH, self.cls_name)
weight_decay = self._preprocess_weight_decay(weight_decay)
self.is_group = False
self.is_group_lr = False
self.is_group_params_ordered = False
self.loss_scale = loss_scale
if isinstance(learning_rate, int):
learning_rate = float(learning_rate)
if isinstance(learning_rate, float):
self.dynamic_lr = False
self.gather = None
self.assignadd = None
self.global_step = None
self.scalar_lr = learning_rate
else:
self.dynamic_lr = True
self.gather = P.GatherV2()
self.assignadd = P.AssignAdd()
self.global_step = Parameter(initializer(0, [1], mindspore.int32), name='global_step')
self.scalar_lr = None
learning_rate = self._get_single_lr(learning_rate)
self.is_group = False
self.is_group_lr = False
self.is_group_params_ordered = False
learning_rate = self._preprocess_single_lr(learning_rate)
if isinstance(parameters[0], dict):
self.is_group = True
self.group_params = []
......@@ -137,32 +121,40 @@ class Optimizer(Cell):
self.group_weight_decay = []
self._init_group_params(parameters, learning_rate, weight_decay)
# The final value of dynamic_lr can be determined after the process of parse_single_lr and init_group_params
if self.dynamic_lr:
self.assignadd = P.AssignAdd()
self.global_step = Parameter(initializer(0, [1], mindspore.int32), name='global_step')
if self.is_group_lr:
self.learning_rate = ParameterTuple(self.group_lr)
if self.dynamic_lr:
self.learning_rate = CellList(self.group_lr)
else:
self.learning_rate = Parameter(Tensor(learning_rate, mstype.float32), name="learning_rate")
self.learning_rate = tuple(self.group_lr)
else:
self.learning_rate = self._build_single_lr(learning_rate, 'learning_rate')
if self.is_group:
self.parameters = ParameterTuple(self.group_params)
self.weight_decay = tuple(self.group_weight_decay)
decay_filter = lambda x: x > 0
self.decay_flags = tuple(decay_filter(x) for x in self.weight_decay)
self.exec_weight_decay = any(self.decay_flags)
else:
self.parameters = ParameterTuple(parameters)
self.weight_decay = weight_decay * loss_scale
decay_filter = lambda x: 'beta' not in x.name and 'gamma' not in x.name
self.decay_flags = tuple(decay_filter(x) for x in self.parameters)
self.exec_weight_decay = self.weight_decay > 0
ps_filter = lambda x: x.is_param_ps
self.ps_parameters = tuple(ps_filter(x) for x in self.parameters)
self.reciprocal_scale = 1.0 / loss_scale
self.exec_weight_decay = any(self.decay_flags)
self.param_length = len(self.parameters)
self.map_ = C.Map()
use_parallel = context.get_auto_parallel_context("enable_parallel_optimizer")
self.use_parallel = use_parallel
if use_parallel:
if self.cls_name not in ["Lamb", "AdamWeightDecayDynamicLR", "AdamWeightDecay"]:
if self.cls_name not in ["Lamb", "AdamWeightDecay"]:
raise RuntimeError("Optimizer segmentation does not support optimizer {}".format(self.cls_name))
if _get_parallel_mode() != ParallelMode.DATA_PARALLEL:
raise RuntimeError("Optimizer segmentation does not support parallel mode {}".format
......@@ -193,13 +185,12 @@ class Optimizer(Cell):
Returns:
tuple[Tensor], The gradients after weight decay.
"""
if self.exec_weight_decay:
params = self.parameters
if self.is_group:
if self.exec_weight_decay:
gradients = self.map_(F.partial(_apply_decay), self.weight_decay, self.decay_flags,
params, gradients)
else:
if self.weight_decay > 0:
gradients = self.map_(F.partial(_apply_decay, self.weight_decay), self.decay_flags,
params, gradients)
......@@ -225,24 +216,53 @@ class Optimizer(Cell):
return gradients
def _get_single_lr(self, learning_rate):
"""Get learning rate in Tensor type."""
if isinstance(learning_rate, float):
def _preprocess_weight_decay(self, weight_decay):
"""Check weight decay, and convert int to float."""
if isinstance(weight_decay, (float, int)):
weight_decay = float(weight_decay)
validator.check_number_range("weight_decay", weight_decay, 0.0, 1.0, Rel.INC_BOTH, self.cls_name)
return weight_decay
raise TypeError("Weight decay should be int or float.")
def _preprocess_single_lr(self, learning_rate):
"""Check lr value, and convert lr to a float, a Tensor or a LearningRateSchedule."""
if isinstance(learning_rate, (float, int)):
learning_rate = float(learning_rate)
validator.check_number_range("learning rate", learning_rate, 0.0, float("inf"), Rel.INC_LEFT, self.cls_name)
lr = Tensor(learning_rate, mstype.float32)
elif isinstance(learning_rate, Iterable):
lr = Tensor(np.array(list(learning_rate)).astype(np.float32))
elif isinstance(learning_rate, Tensor):
return learning_rate
if isinstance(learning_rate, Tensor) and learning_rate.dim() == 0:
return learning_rate
self.dynamic_lr = True
if isinstance(learning_rate, Iterable):
return Tensor(np.array(list(learning_rate)).astype(np.float32))
if isinstance(learning_rate, Tensor):
if learning_rate.dim() > 1:
raise ValueError("Learning rate should be a 0 or 1 dim `Tensor`,"
raise ValueError("The dim of `Tensor` type Learning rate should be a 0 or 1,"
f"but got {learning_rate.dim()}.")
if learning_rate.dim() == 1 and learning_rate.size() < 2:
logger.warning("If want to use the dynamic learning rate, please make sure that the number "
"of elements in the list, tuple or tensor passed is greater than 1.")
lr = learning_rate
else:
raise TypeError("Learning rate should be float, Tensor or Iterable.")
return lr
logger.warning("If use `Tensor` type dynamic learning rate, please make sure that the number"
"of elements in the tensor passed is greater than 1.")
return learning_rate
if isinstance(learning_rate, LearningRateSchedule):
return learning_rate
raise TypeError("Learning rate should be int, float, Tensor, Iterable or LearningRateSchedule.")
def _build_single_lr(self, learning_rate, name):
"""Build learning rate value, convert learning rate to a Parameter or a LearningRateSchedule."""
if isinstance(learning_rate, float):
learning_rate = Parameter(Tensor(learning_rate, mstype.float32), name)
if self.is_group_lr and self.dynamic_lr:
learning_rate = _ConvertToCell(learning_rate)
return learning_rate
if isinstance(learning_rate, Tensor) and learning_rate.dim() == 0:
learning_rate = Parameter(learning_rate, name)
if self.is_group_lr and self.dynamic_lr:
learning_rate = _ConvertToCell(learning_rate)
return learning_rate
if isinstance(learning_rate, Tensor) and learning_rate.dim() == 1:
return _IteratorLearningRate(learning_rate, name)
return learning_rate
def _check_group_params(self, parameters):
"""Check group params."""
......@@ -270,13 +290,12 @@ class Optimizer(Cell):
def _parse_group_params(self, parameters, learning_rate):
"""Parse group params."""
self._check_group_params(parameters)
if self.dynamic_lr:
dynamic_lr_length = learning_rate.size()
if isinstance(learning_rate, Tensor) and learning_rate.dim() == 1:
tensor_lr_length = learning_rate.size()
else:
dynamic_lr_length = 0
tensor_lr_length = 0
for group_param in parameters:
lr_length = dynamic_lr_length
if 'order_params' in group_param.keys():
if len(group_param.keys()) > 1:
raise ValueError("The order params dict in group parameters should "
......@@ -288,53 +307,38 @@ class Optimizer(Cell):
if 'lr' in group_param.keys():
self.is_group_lr = True
self._get_single_lr(group_param['lr'])
if isinstance(group_param['lr'], Iterable):
lr_length = len(group_param['lr'])
self.dynamic_lr = True
elif isinstance(group_param['lr'], Tensor):
lr_length = group_param['lr'].size()
self.dynamic_lr = True
if dynamic_lr_length not in (lr_length, 0):
raise ValueError("The dynamic learning rate in group should be the same size.")
group_lr = self._preprocess_single_lr(group_param['lr'])
dynamic_lr_length = lr_length
self.dynamic_lr_length = dynamic_lr_length
if isinstance(group_lr, Tensor) and group_lr.dim() == 1:
group_lr_length = group_lr.size()
if tensor_lr_length == 0:
tensor_lr_length = group_lr_length
elif group_lr_length != tensor_lr_length:
raise ValueError("The Tensor type dynamic learning rate in group should be the same size.")
def _init_group_params(self, parameters, learning_rate, weight_decay):
"""Init learning rate or weight decay in group params."""
origin_dynamic_lr = self.dynamic_lr
self._parse_group_params(parameters, learning_rate)
if self.dynamic_lr and not origin_dynamic_lr:
self.gather = P.GatherV2()
self.assignadd = P.AssignAdd()
self.global_step = Parameter(initializer(0, [1], mindspore.int32), name='global_step')
default_lr = self._build_single_lr(learning_rate, 'learning_rate')
params_store = []
for group_param in parameters:
for group_num, group_param in enumerate(parameters):
if 'order_params' in group_param.keys():
ordered_parameters = group_param['order_params']
continue
self.group_params += group_param['params']
if 'lr' in group_param.keys():
params_dynamic_lr = isinstance(group_param['lr'], (Iterable, Tensor))
if self.dynamic_lr and not params_dynamic_lr:
lr = Tensor(np.array([group_param['lr']] * self.dynamic_lr_length).astype(np.float32))
lr_param_name = 'learning_rate_group_' + str(group_num)
lr = self._preprocess_single_lr(group_param['lr'])
lr = self._build_single_lr(lr, lr_param_name)
else:
lr = self._get_single_lr(group_param['lr'])
else:
if self.dynamic_lr and not origin_dynamic_lr:
lr = Tensor(np.array([self.scalar_lr] * self.dynamic_lr_length).astype(np.float32))
else:
lr = learning_rate
lr = default_lr
if 'weight_decay' in group_param.keys():
validator.check_float_legal_value('weight_decay', group_param['weight_decay'], None)
validator.check_number_range('weight_decay', group_param['weight_decay'], 0.0, 1.0,
Rel.INC_BOTH, self.cls_name)
weight_decay_ = group_param['weight_decay'] * self.loss_scale
cur_weight_decay = self._preprocess_weight_decay(group_param['weight_decay'])
weight_decay_ = cur_weight_decay * self.loss_scale
else:
weight_decay_ = weight_decay * self.loss_scale
......@@ -348,7 +352,7 @@ class Optimizer(Cell):
raise RuntimeError(f"The {param.name} parameter has appeared in parameter groups.")
params_store.append(param.name)
self.group_lr.append(Parameter(lr, name="lr_" + param.name))
self.group_lr.append(lr)
self.group_weight_decay.append(weight_decay_)
if self.is_group_params_ordered:
......@@ -384,18 +388,16 @@ class Optimizer(Cell):
Returns:
float, the learning rate of current step.
"""
if self.is_group_lr:
lr = self.learning_rate
if self.dynamic_lr:
if self.is_group_lr:
lr = ()
for i in range(self.param_length):
current_dynamic_lr = self.gather(self.learning_rate[i], self.global_step, 0)
for learning_rate in self.learning_rate:
current_dynamic_lr = learning_rate(self.global_step)
lr += (current_dynamic_lr,)
F.control_depend(lr, self.assignadd(self.global_step, 1))
else:
lr = self.learning_rate
if self.dynamic_lr:
lr = self.gather(self.learning_rate, self.global_step, 0)
lr = self.learning_rate(self.global_step)
F.control_depend(lr, self.assignadd(self.global_step, 1))
return lr
......@@ -409,29 +411,31 @@ class Optimizer(Cell):
Returns:
Parameter, single `Parameter` or `list[Parameter]` according to the input type.
"""
if not isinstance(param, (Parameter, list)):
def get_lr_value(learning_rate):
if isinstance(learning_rate, (_ConvertToCell, _IteratorLearningRate)):
return learning_rate.learning_rate
return learning_rate
if isinstance(param, Parameter):
param_list = [param]
elif isinstance(param, list):
param_list = param
else:
raise TypeError(f"The parameter only support 'Parameter' or 'list' type.")
if isinstance(param, list):
lr = []
for p in param:
for p in param_list:
validator.check_value_type("parameter", p, [Parameter], self.cls_name)
if p not in self.parameters:
raise ValueError(f"The parameter {p.name} is not in optimizer.")
if self.is_group_lr:
index = self.parameters.index(p)
lr.append(self.learning_rate[index])
else:
lr.append(self.learning_rate)
else:
if param not in self.parameters:
raise ValueError(f"The parameter {param.name} is not in optimizer.")
if self.is_group_lr:
index = self.parameters.index(param)
lr = self.learning_rate[index]
lr.append(get_lr_value(self.learning_rate[index]))
else:
lr = self.learning_rate
return lr
lr.append(get_lr_value(self.learning_rate))
return lr if isinstance(param, list) else lr[0]
def _get_parameter_group_id(self):
"""
......@@ -524,3 +528,33 @@ def tensor_grad_scale_with_sparse(scale, grad):
if scale == 1.0:
return grad
return IndexedSlices(grad.indices(), grad.values() * scale, grad.dense_shape())
class _ConvertToCell(LearningRateSchedule):
"""Inner api, convert learning rate of scalar to LearningRateSchedule."""
def __init__(self, learning_rate):
super(_ConvertToCell, self).__init__()
if not isinstance(learning_rate, Parameter):
raise TypeError('Learning rate must be Parameter.')
self.learning_rate = learning_rate
def construct(self, global_step):
return self.learning_rate + 1.0 - 1.0
class _IteratorLearningRate(LearningRateSchedule):
"""Inner api, convert learning rate of Tensor(list) to LearningRateSchedule."""
def __init__(self, learning_rate, name):
super(_IteratorLearningRate, self).__init__()
if isinstance(learning_rate, Tensor):
if learning_rate.dim() != 1:
raise ValueError("The dim of `Tensor` type dynamic learning rate should be a 1,"
f"but got {learning_rate.dim()}.")
else:
raise TypeError("Learning rate should be Tensor.")
self.learning_rate = Parameter(learning_rate, name)
self.gather = P.GatherV2()
def construct(self, global_step):
return self.gather(self.learning_rate, global_step, 0)
......@@ -32,7 +32,7 @@ def _tensor_run_opt_with_sparse(opt, sparse_opt, learning_rate, l1, l2, gradient
@_proximal_ada_grad_opt.register("Function", "Function", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor", "Tensor")
def _tensor_run_opt(opt, sparse_opt, learning_rate, l1, l2, gradient, weight, accum):
def _tensor_run_opt(opt, sparse_opt, l1, l2, learning_rate, gradient, weight, accum):
"""Apply proximal_ada_grad optimizer to the weight parameter."""
success = True
success = F.depend(success, opt(weight, accum, learning_rate, l1, l2, gradient))
......@@ -59,15 +59,42 @@ class ProximalAdagrad(Optimizer):
<http://papers.nips.cc//paper/3793-efficient-learning-using-forward-backward-splitting.pdf>`_.
Note:
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
To improve parameter groups performance, the customized order of parameters can be supported.
The sparse strategy is applied while the SparseGatherV2 operator being used for forward network.
The sparse feature is under continuous development. The sparse
behavior is currently performed on the CPU.
Args:
params (list[Parameter]): A list of parameter, which will be updated. The element in `params`
should be Parameter.
params (Union[list[Parameter], list[dict]]): When the `params` is a list of `Parameter` which will be updated,
the element in `params` should be class `Parameter`. When the `params` is a list of `dict`, the "params",
"lr", "weight_decay" and "order_params" are the keys can be parsed.
- params: Required. The value should be a list of `Parameter`.
- lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used.
If not, the `learning_rate` in the API will be used.
- weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay
will be used. If not, the `weight_decay` in the API will be used.
- order_params: Optional. If "order_params" in the keys, the value should be the order of parameters and
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' should be in one of group parameters.
accum (float): The starting value for accumulators, must be zero or positive values. Default: 0.1.
learning_rate (float): The learning rate value, must be greater than or equal to zero. Default: 0.001.
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or graph for the learning rate.
When the learning_rate is a Iterable or a Tensor with dimension of 1, use dynamic learning rate, then
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor with
dimension of 0, use fixed learning rate. Other cases are not supported. The float learning rate should be
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
Default: 0.001.
l1 (float): l1 regularization strength, must be greater than or equal to zero. Default: 0.0.
l2 (float): l2 regularization strength, must be greater than or equal to zero. Default: 0.0.
use_locking (bool): If True use locks for update operation. Default: False.
......@@ -83,21 +110,31 @@ class ProximalAdagrad(Optimizer):
Examples:
>>> net = Net()
>>> #1) All parameters use the same learning rate and weight decay
>>> optim = nn.ProximalAdagrad(params=net.trainable_params())
>>>
>>> #2) Use parameter groups and set different values
>>> conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
>>> no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
>>> group_params = [{'params': conv_params, 'weight_decay': 0.01},
>>> {'params': no_conv_params, 'lr': 0.01},
>>> {'order_params': net.trainable_params()}]
>>> optim = nn.ProximalAdagrad(group_params, learning_rate=0.1, weight_decay=0.0)
>>> # The conv_params's parameters will use default learning rate of 0.1 and weight decay of 0.01.
>>> # The no_conv_params's parameters will use learning rate of 0.01 and default weight decay of 0.0.
>>> # The final parameters order in which the optimizer will be followed is the value of 'order_params'.
>>>
>>> loss = nn.SoftmaxCrossEntropyWithLogits()
>>> opt = nn.ProximalAdagrad(net.trainable_params())
>>> model = Model(net, loss_fn=loss, optimizer=opt, metrics=None)
>>> model = Model(net, loss_fn=loss, optimizer=optim)
"""
def __init__(self, params, accum=0.1, learning_rate=0.001, l1=0.0, l2=0.0,
use_locking=False, loss_scale=1.0, weight_decay=0.0):
super(ProximalAdagrad, self).__init__(learning_rate, params, weight_decay, loss_scale)
if self.is_group:
raise RuntimeError(f"The {self.cls_name} optimizer cannot support group setting.")
_check_param_value(accum, l1, l2, use_locking, self.cls_name)
self.accum = self.parameters.clone(prefix="accum", init=accum)
self.l1 = Tensor(l1, mstype.float32)
self.l2 = Tensor(l2, mstype.float32)
self.weight_decay = weight_decay
self.hyper_map = C.HyperMap()
self.opt = P.ApplyProximalAdagrad(use_locking=use_locking)
self.sparse_opt = P.FusedSparseProximalAdagrad(use_locking=use_locking)
......@@ -107,7 +144,11 @@ class ProximalAdagrad(Optimizer):
accum = self.accum
grads = self.decay_weight(grads)
grads = self.scale_grad(grads)
lr = self.learning_rate
success = self.map_(F.partial(_proximal_ada_grad_opt, self.opt, self.sparse_opt, lr, self.l1, self.l2),
lr = self.get_lr()
if self.is_group_lr:
success = self.map_(F.partial(_proximal_ada_grad_opt, self.opt, self.sparse_opt, self.l1, self.l2), lr,
grads, params, accum)
else:
success = self.map_(F.partial(_proximal_ada_grad_opt, self.opt, self.sparse_opt, self.l1, self.l2, lr),
grads, params, accum)
return success
......@@ -44,12 +44,9 @@ class RMSProp(Optimizer):
Implements Root Mean Squared Propagation (RMSProp) algorithm.
Note:
The RMSProp optimizer supports separating parameter groups. Different parameter groups can set different
`learning_rate` and `weight_decay`.
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
To improve parameter groups performance, the customized order of parameters can be supported.
......@@ -109,13 +106,14 @@ class RMSProp(Optimizer):
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' should be in one of group parameters.
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
Iterable or a Tensor and the dims of the Tensor is 1,
use dynamic learning rate, then the i-th step will
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a Tensor
but the dims of the Tensor is 0, use fixed learning rate.
Other cases are not supported. Default: 0.1.
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or graph for the learning rate.
When the learning_rate is a Iterable or a Tensor with dimension of 1, use dynamic learning rate, then
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor with
dimension of 0, use fixed learning rate. Other cases are not supported. The float learning rate should be
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
Default: 0.1.
decay (float): Decay rate. Should be equal to or greater than 0. Default: 0.9.
momentum (float): Hyperparameter of type float, means momentum for the moving average. Should be equal to or
greater than 0. Default: 0.0.
......
......@@ -40,12 +40,9 @@ class SGD(Optimizer):
momentum in deep learning <http://proceedings.mlr.press/v28/sutskever13.html>`_.
Note:
The SGD optimizer supports separating parameter groups. Different parameter groups can set different
`learning_rate` and `weight_decay`.
When separating parameter groups, the weight decay in each group will be applied on the parameters if the
value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be
applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters.
weight decay is positive. When not separating parameter groups, the `weight_decay` in the API will be applied
on the parameters without 'beta' or 'gamma' in their names if `weight_decay` is positive.
To improve parameter groups performance, the customized order of parameters can be supported.
......@@ -66,14 +63,14 @@ class SGD(Optimizer):
the order will be followed in optimizer. There are no other keys in the `dict` and the parameters which
in the value of 'order_params' should be in one of group parameters.
learning_rate (Union[float, Tensor, Iterable]): A value for the learning rate. When the learning_rate is
Iterable or a Tensor and the dims of the Tensor is 1,
use dynamic learning rate, then the i-th step will
take the i-th value as the learning rate.
When the learning_rate is float or learning_rate is a Tensor
but the dims of the Tensor is 0, use fixed learning rate.
Other cases are not supported. It should be equal to or
greater than 0. Default: 0.1.
learning_rate (Union[float, Tensor, Iterable, LearningRateSchedule]): A value or graph for the learning rate.
When the learning_rate is a Iterable or a Tensor with dimension of 1, use dynamic learning rate, then
the i-th step will take the i-th value as the learning rate. When the learning_rate is LearningRateSchedule,
use dynamic learning rate, the i-th learning rate will be calculated during the process of training
according to the formula of LearningRateSchedule. When the learning_rate is a float or a Tensor with
dimension of 0, use fixed learning rate. Other cases are not supported. The float learning rate should be
equal to or greater than 0. If the type of `learning_rate` is int, it will be converted to float.
Default: 0.1.
momentum (float): A floating point value the momentum. should be at least 0.0. Default: 0.0.
dampening (float): A floating point value of dampening for momentum. should be at least 0.0. Default: 0.0.
weight_decay (float): Weight decay (L2 penalty). It should be in range [0.0, 1.0]. Default: 0.0.
......
......@@ -14,9 +14,10 @@
# ============================================================================
"""Learning scheduler."""
from math import ceil
import numpy as np
import mindspore.nn.learning_rate_schedule as lr_schedules
def square_root_schedule(lr, update_num, decay_start_step,
warmup_steps=2000,
......@@ -105,3 +106,35 @@ def polynomial_decay_scheduler(lr, min_lr, decay_steps, total_update_num, warmup
lrs[step] = (lr - min_lr) * pow(1 - _step / _decay_steps, power) + min_lr
return lrs
class BertLearningRate(lr_schedules.LearningRateSchedule):
"""
Implements of warmup-polydecay learning rate scheduler.
Args:
learning_rate (float): The initial value of learning rate.
end_learning_rate (float): The end value of learning rate.
warmup_steps (int): The warm up steps of learning rate.
decay_steps (int): A value used to calculate decayed learning rate.
power (float): A value used to calculate decayed learning rate.
Returns:
Tensor. The learning rate value for the current step.
"""
def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power):
super(BertLearningRate, self).__init__()
self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps)
self.decay_lr = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
self.greater = P.Greater()
self.one = Tensor(np.array([1.0]).astype(np.float32))
self.cast = P.Cast()
def construct(self, global_step):
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
warmup_lr = self.warmup_lr(global_step)
decay_lr = self.decay_lr(global_step)
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
return lr
......@@ -37,7 +37,7 @@ from src.transformer.infer_mass import infer
from src.utils import LossCallBack
from src.utils import one_weight, zero_weight, weight_variable
from src.utils import square_root_schedule
from src.utils.lr_scheduler import polynomial_decay_scheduler
from src.utils.lr_scheduler import polynomial_decay_scheduler, BertLearningRate
parser = argparse.ArgumentParser(description='MASS train entry point.')
parser.add_argument("--config", type=str, required=True, help="model config json file path.")
......@@ -178,10 +178,16 @@ def _build_training_pipeline(config: TransformerConfig,
if config.optimizer.lower() == "adam":
optimizer = Adam(net_with_loss.trainable_params(), lr, beta1=0.9, beta2=0.98)
elif config.optimizer.lower() == "lamb":
optimizer = Lamb(net_with_loss.trainable_params(), decay_steps=12000,
start_learning_rate=config.lr, end_learning_rate=config.min_lr,
power=10.0, warmup_steps=config.warmup_steps, weight_decay=0.01,
eps=1e-6)
lr = BertLearningRate(decay_steps=12000, learning_rate=config.lr, end_learning_rate=config.min_lr,
power=10.0, warmup_steps=config.warmup_steps)
decay_params = list(filter(lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower(),
net_with_loss.trainable_params()))
other_params = list(filter(lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower(),
net_with_loss.trainable_params()))
group_params = [{'params': decay_params, 'weight_decay': 0.01},
{'params': other_params}]
optimizer = Lamb(group_params, lr, eps=1e-6)
elif config.optimizer.lower() == "momentum":
optimizer = Momentum(net_with_loss.trainable_params(), lr, momentum=0.9)
else:
......
......@@ -147,7 +147,7 @@ Parameters for dataset and network (Pre-Training/Fine-Tuning/Evaluation):
compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float16
Parameters for optimizer:
AdamWeightDecayDynamicLR:
AdamWeightDecay:
decay_steps steps of the learning rate decay: N
learning_rate value of learning rate: Q
end_learning_rate value of end learning rate: Q, must be positive
......
......@@ -23,12 +23,12 @@ from src.bert_for_finetune import BertFinetuneCell, BertCLS
from src.finetune_eval_config import optimizer_cfg, bert_net_cfg
from src.dataset import create_classification_dataset
from src.assessment_method import Accuracy, F1, MCC, Spearman_Correlation
from src.utils import make_directory, LossCallBack, LoadNewestCkpt
from src.utils import make_directory, LossCallBack, LoadNewestCkpt, BertLearningRate
import mindspore.common.dtype as mstype
from mindspore import context
from mindspore import log as logger
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore.nn.optim import AdamWeightDecayDynamicLR, Lamb, Momentum
from mindspore.nn.optim import AdamWeightDecay, Lamb, Momentum
from mindspore.common.tensor import Tensor
from mindspore.train.model import Model
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
......@@ -42,27 +42,31 @@ def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoin
raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
steps_per_epoch = dataset.get_dataset_size()
# optimizer
if optimizer_cfg.optimizer == 'AdamWeightDecayDynamicLR':
optimizer = AdamWeightDecayDynamicLR(network.trainable_params(),
decay_steps=steps_per_epoch * epoch_num,
learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.learning_rate,
end_learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.end_learning_rate,
power=optimizer_cfg.AdamWeightDecayDynamicLR.power,
if optimizer_cfg.optimizer == 'AdamWeightDecay':
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
weight_decay=optimizer_cfg.AdamWeightDecayDynamicLR.weight_decay,
eps=optimizer_cfg.AdamWeightDecayDynamicLR.eps)
decay_steps=steps_per_epoch * epoch_num,
power=optimizer_cfg.AdamWeightDecay.power)
params = net_with_loss.trainable_params()
decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
other_params = list(filter(lambda x: x not in decay_params, params))
group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
{'params': other_params, 'weight_decay': 0.0}]
optimizer = AdamWeightDecay(group_params, lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
elif optimizer_cfg.optimizer == 'Lamb':
optimizer = Lamb(network.trainable_params(), decay_steps=steps_per_epoch * epoch_num,
start_learning_rate=optimizer_cfg.Lamb.start_learning_rate,
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.Lamb.learning_rate,
end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
power=optimizer_cfg.Lamb.power, weight_decay=optimizer_cfg.Lamb.weight_decay,
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
decay_filter=optimizer_cfg.Lamb.decay_filter)
decay_steps=steps_per_epoch * epoch_num,
power=optimizer_cfg.Lamb.power)
optimizer = Lamb(network.trainable_params(), learning_rate=lr_schedule)
elif optimizer_cfg.optimizer == 'Momentum':
optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate,
momentum=optimizer_cfg.Momentum.momentum)
else:
raise Exception("Optimizer not supported. support: [AdamWeightDecayDynamicLR, Lamb, Momentum]")
raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]")
# load checkpoint into network
ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
......
......@@ -23,13 +23,13 @@ import argparse
from src.bert_for_finetune import BertFinetuneCell, BertNER
from src.finetune_eval_config import optimizer_cfg, bert_net_cfg
from src.dataset import create_ner_dataset
from src.utils import make_directory, LossCallBack, LoadNewestCkpt
from src.utils import make_directory, LossCallBack, LoadNewestCkpt, BertLearningRate
from src.assessment_method import Accuracy, F1, MCC, Spearman_Correlation
import mindspore.common.dtype as mstype
from mindspore import context
from mindspore import log as logger
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore.nn.optim import AdamWeightDecayDynamicLR, Lamb, Momentum
from mindspore.nn.optim import AdamWeightDecay, Lamb, Momentum
from mindspore.common.tensor import Tensor
from mindspore.train.model import Model
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
......@@ -44,27 +44,30 @@ def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoin
raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
steps_per_epoch = dataset.get_dataset_size()
# optimizer
if optimizer_cfg.optimizer == 'AdamWeightDecayDynamicLR':
optimizer = AdamWeightDecayDynamicLR(network.trainable_params(),
decay_steps=steps_per_epoch * epoch_num,
learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.learning_rate,
end_learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.end_learning_rate,
power=optimizer_cfg.AdamWeightDecayDynamicLR.power,
if optimizer_cfg.optimizer == 'AdamWeightDecay':
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
weight_decay=optimizer_cfg.AdamWeightDecayDynamicLR.weight_decay,
eps=optimizer_cfg.AdamWeightDecayDynamicLR.eps)
decay_steps=steps_per_epoch * epoch_num,
power=optimizer_cfg.AdamWeightDecay.power)
params = network.trainable_params()
decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
other_params = list(filter(lambda x: x not in decay_params, params))
group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
{'params': other_params, 'weight_decay': 0.0}]
optimizer = AdamWeightDecay(group_params, lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
elif optimizer_cfg.optimizer == 'Lamb':
optimizer = Lamb(network.trainable_params(), decay_steps=steps_per_epoch * epoch_num,
start_learning_rate=optimizer_cfg.Lamb.start_learning_rate,
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.Lamb.learning_rate,
end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
power=optimizer_cfg.Lamb.power, weight_decay=optimizer_cfg.Lamb.weight_decay,
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
decay_filter=optimizer_cfg.Lamb.decay_filter)
decay_steps=steps_per_epoch * epoch_num,
power=optimizer_cfg.Lamb.power)
optimizer = Lamb(network.trainable_params(), learning_rate=lr_schedule)
elif optimizer_cfg.optimizer == 'Momentum':
optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate,
momentum=optimizer_cfg.Momentum.momentum)
else:
raise Exception("Optimizer not supported. support: [AdamWeightDecayDynamicLR, Lamb, Momentum]")
raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]")
# load checkpoint into network
ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
......
......@@ -28,12 +28,12 @@ from mindspore.train.parallel_utils import ParallelMode
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecayDynamicLR
from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecay
from mindspore import log as logger
from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell
from src.dataset import create_bert_dataset
from src.config import cfg, bert_net_cfg
from src.utils import LossCallBack
from src.utils import LossCallBack, BertLearningRate
_current_dir = os.path.dirname(os.path.realpath(__file__))
......@@ -109,24 +109,35 @@ def run_pretrain():
netwithloss = BertNetworkWithLoss(bert_net_cfg, True)
if cfg.optimizer == 'Lamb':
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size() * new_repeat_count,
start_learning_rate=cfg.Lamb.start_learning_rate, end_learning_rate=cfg.Lamb.end_learning_rate,
power=cfg.Lamb.power, warmup_steps=cfg.Lamb.warmup_steps, weight_decay=cfg.Lamb.weight_decay,
eps=cfg.Lamb.eps)
lr_schedule = BertLearningRate(learning_rate=cfg.Lamb.learning_rate,
end_learning_rate=cfg.Lamb.end_learning_rate,
warmup_steps=cfg.Lamb.warmup_steps,
decay_steps=ds.get_dataset_size() * new_repeat_count,
power=cfg.Lamb.power)
params = net_with_loss.trainable_params()
decay_params = list(filter(cfg.Lamb.decay_filter, params))
other_params = list(filter(lambda x: x not in decay_params, params))
group_params = [{'params': decay_params, 'weight_decay': cfg.Lamb.weight_decay},
{'params': other_params}]
optimizer = Lamb(group_params, learning_rate=lr_schedule, eps=cfg.Lamb.eps)
elif cfg.optimizer == 'Momentum':
optimizer = Momentum(netwithloss.trainable_params(), learning_rate=cfg.Momentum.learning_rate,
momentum=cfg.Momentum.momentum)
elif cfg.optimizer == 'AdamWeightDecayDynamicLR':
optimizer = AdamWeightDecayDynamicLR(netwithloss.trainable_params(),
elif cfg.optimizer == 'AdamWeightDecay':
lr_schedule = BertLearningRate(learning_rate=cfg.AdamWeightDecay.learning_rate,
end_learning_rate=cfg.AdamWeightDecay.end_learning_rate,
warmup_steps=cfg.AdamWeightDecay.warmup_steps,
decay_steps=ds.get_dataset_size() * new_repeat_count,
learning_rate=cfg.AdamWeightDecayDynamicLR.learning_rate,
end_learning_rate=cfg.AdamWeightDecayDynamicLR.end_learning_rate,
power=cfg.AdamWeightDecayDynamicLR.power,
weight_decay=cfg.AdamWeightDecayDynamicLR.weight_decay,
eps=cfg.AdamWeightDecayDynamicLR.eps,
warmup_steps=cfg.AdamWeightDecayDynamicLR.warmup_steps)
power=cfg.AdamWeightDecay.power)
params = net_with_loss.trainable_params()
decay_params = list(filter(cfg.AdamWeightDecay.decay_filter, params))
other_params = list(filter(lambda x: x not in decay_params, params))
group_params = [{'params': decay_params, 'weight_decay': cfg.AdamWeightDecay.weight_decay},
{'params': other_params, 'weight_decay': 0.0}]
optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=cfg.AdamWeightDecay.eps)
else:
raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecayDynamicLR]".
raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecay]".
format(cfg.optimizer))
callback = [TimeMonitor(ds.get_dataset_size()), LossCallBack()]
if args_opt.enable_save_ckpt == "true":
......
......@@ -25,12 +25,12 @@ from src.dataset import create_squad_dataset
from src import tokenization
from src.create_squad_data import read_squad_examples, convert_examples_to_features
from src.run_squad import write_predictions
from src.utils import make_directory, LossCallBack, LoadNewestCkpt
from src.utils import make_directory, LossCallBack, LoadNewestCkpt, BertLearningRate
import mindspore.common.dtype as mstype
from mindspore import context
from mindspore import log as logger
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore.nn.optim import AdamWeightDecayDynamicLR, Lamb, Momentum
from mindspore.nn.optim import AdamWeightDecay, Lamb, Momentum
from mindspore.common.tensor import Tensor
from mindspore.train.model import Model
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
......@@ -44,27 +44,31 @@ def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoin
raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
steps_per_epoch = dataset.get_dataset_size()
# optimizer
if optimizer_cfg.optimizer == 'AdamWeightDecayDynamicLR':
optimizer = AdamWeightDecayDynamicLR(network.trainable_params(),
decay_steps=steps_per_epoch * epoch_num,
learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.learning_rate,
end_learning_rate=optimizer_cfg.AdamWeightDecayDynamicLR.end_learning_rate,
power=optimizer_cfg.AdamWeightDecayDynamicLR.power,
if optimizer_cfg.optimizer == 'AdamWeightDecay':
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
weight_decay=optimizer_cfg.AdamWeightDecayDynamicLR.weight_decay,
eps=optimizer_cfg.AdamWeightDecayDynamicLR.eps)
decay_steps=steps_per_epoch * epoch_num,
power=optimizer_cfg.AdamWeightDecay.power)
params = network.trainable_params()
decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
other_params = list(filter(lambda x: x not in decay_params, params))
group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
{'params': other_params, 'weight_decay': 0.0}]
optimizer = AdamWeightDecay(group_params, lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
elif optimizer_cfg.optimizer == 'Lamb':
optimizer = Lamb(network.trainable_params(), decay_steps=steps_per_epoch * epoch_num,
start_learning_rate=optimizer_cfg.Lamb.start_learning_rate,
lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.Lamb.learning_rate,
end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
power=optimizer_cfg.Lamb.power, weight_decay=optimizer_cfg.Lamb.weight_decay,
warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
decay_filter=optimizer_cfg.Lamb.decay_filter)
decay_steps=steps_per_epoch * epoch_num,
power=optimizer_cfg.Lamb.power)
optimizer = Lamb(network.trainable_params(), learning_rate=lr_schedule)
elif optimizer_cfg.optimizer == 'Momentum':
optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate,
momentum=optimizer_cfg.Momentum.momentum)
else:
raise Exception("Optimizer not supported. support: [AdamWeightDecayDynamicLR, Lamb, Momentum]")
raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]")
# load checkpoint into network
ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
......
......@@ -24,20 +24,22 @@ cfg = edict({
'scale_factor': 2,
'scale_window': 1000,
'optimizer': 'Lamb',
'AdamWeightDecayDynamicLR': edict({
'AdamWeightDecay': edict({
'learning_rate': 3e-5,
'end_learning_rate': 1e-10,
'power': 5.0,
'weight_decay': 1e-5,
'decay_filter': lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower(),
'eps': 1e-6,
'warmup_steps': 10000,
}),
'Lamb': edict({
'start_learning_rate': 3e-5,
'learning_rate': 3e-5,
'end_learning_rate': 1e-10,
'power': 10.0,
'warmup_steps': 10000,
'weight_decay': 0.01,
'decay_filter': lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower(),
'eps': 1e-6,
}),
'Momentum': edict({
......
......@@ -23,19 +23,20 @@ from .bert_model import BertConfig
optimizer_cfg = edict({
'optimizer': 'Lamb',
'AdamWeightDecayDynamicLR': edict({
'AdamWeightDecay': edict({
'learning_rate': 2e-5,
'end_learning_rate': 1e-7,
'power': 1.0,
'weight_decay': 1e-5,
'decay_filter': lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower(),
'eps': 1e-6,
}),
'Lamb': edict({
'start_learning_rate': 2e-5,
'learning_rate': 2e-5,
'end_learning_rate': 1e-7,
'power': 1.0,
'weight_decay': 0.01,
'decay_filter': lambda x: False,
'decay_filter': lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower(),
}),
'Momentum': edict({
'learning_rate': 2e-5,
......
......@@ -23,6 +23,7 @@ from mindspore.ops import operations as P
from mindspore.common.tensor import Tensor
from mindspore.common import dtype as mstype
from mindspore.train.callback import Callback
from mindspore.nn.learning_rate_schedule import LearningRateSchedule, PolynomialDecayLR, WarmUpLR
class CrossEntropyCalculation(nn.Cell):
......@@ -123,3 +124,25 @@ def LoadNewestCkpt(load_finetune_checkpoint_dir, steps_per_epoch, epoch_num, pre
max_num = int(num)
load_finetune_checkpoint_path = os.path.join(load_finetune_checkpoint_dir, filename)
return load_finetune_checkpoint_path
class BertLearningRate(LearningRateSchedule):
"""
Warmup-decay learning rate for Bert network.
"""
def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power):
super(BertLearningRate, self).__init__()
self.warmup_lr = WarmUpLR(learning_rate, warmup_steps)
self.decay_lr = PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
self.greater = P.Greater()
self.one = Tensor(np.array([1.0]).astype(np.float32))
self.cast = P.Cast()
def construct(self, global_step):
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
warmup_lr = self.warmup_lr(global_step)
decay_lr = self.decay_lr(global_step)
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
return lr
......@@ -30,7 +30,7 @@ verification_set = [
'block': {
'model': network,
'loss': SquaredLoss(),
'opt': Lamb(network.trainable_params(), decay_steps=num_epochs, warmup_steps=10, weight_decay=0.01),
'opt': Lamb(network.trainable_params(), 0.02, weight_decay=0.01),
'num_epochs': num_epochs,
'loss_upper_bound': 0.3,
},
......
......@@ -31,7 +31,7 @@ Example:
'block': {
'model': network,
'loss': SquaredLoss(),
'opt': Lamb(network.trainable_params(), decay_steps=num_epochs, warmup_steps=10, weight_decay=0.01),
'opt': Lamb(network.trainable_params(), lr=0.02, weight_decay=0.01),
'num_epochs': num_epochs,
'loss_upper_bound': 0.3,
},
......
......@@ -22,8 +22,9 @@ import os
import mindspore.common.dtype as mstype
import mindspore.context as context
from mindspore import Tensor
from mindspore.nn.optim import AdamWeightDecayDynamicLR
from mindspore.nn.optim import AdamWeightDecay
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from mindspore.nn import learning_rate_schedule as lr_schedules
from model_zoo.bert.src import BertConfig, BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell
from ...dataset_mock import MindData
from ...ops_common import nn, np, batch_tuple_tensor, build_construct_graph
......@@ -98,6 +99,25 @@ def get_config(version='base', batch_size=1):
return BertConfig(batch_size=batch_size)
class BertLearningRate(lr_schedules.LearningRateSchedule):
def __init__(self, decay_steps, warmup_steps=0, learning_rate=0.1, end_learning_rate=0.0001, power=1.0):
super(BertLearningRate, self).__init__()
self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps)
self.decay_lr = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
self.greater = P.Greater()
self.one = Tensor(np.array([1.0]).astype(np.float32))
self.cast = P.Cast()
def construct(self, global_step):
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
warmup_lr = self.warmup_lr(global_step)
decay_lr = self.decay_lr(global_step)
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
return lr
def test_bert_train():
"""
the main function
......@@ -123,7 +143,8 @@ def test_bert_train():
config = get_config(version=version, batch_size=batch_size)
netwithloss = BertNetworkWithLoss(config, True)
optimizer = AdamWeightDecayDynamicLR(netwithloss.trainable_params(), 10)
lr = BertLearningRate(10)
optimizer = AdamWeightDecay(netwithloss.trainable_params(), lr)
net = ModelBert(netwithloss, optimizer=optimizer)
net.set_train()
build_construct_graph(net, *inputs, execute=False)
......@@ -147,7 +168,8 @@ def test_bert_withlossscale_train():
config = get_config(version=version, batch_size=batch_size)
netwithloss = BertNetworkWithLoss(config, True)
optimizer = AdamWeightDecayDynamicLR(netwithloss.trainable_params(), 10)
lr = BertLearningRate(10)
optimizer = AdamWeightDecay(netwithloss.trainable_params(), lr)
net = ModelBert(netwithloss, optimizer=optimizer)
net.set_train()
build_construct_graph(net, *inputs, execute=True)
......@@ -173,7 +195,8 @@ def bert_withlossscale_manager_train():
config = get_config(version=version, batch_size=batch_size)
netwithloss = BertNetworkWithLoss(config, True)
optimizer = AdamWeightDecayDynamicLR(netwithloss.trainable_params(), 10)
lr = BertLearningRate(10)
optimizer = AdamWeightDecay(netwithloss.trainable_params(), lr)
net = ModelBert(netwithloss, optimizer=optimizer)
net.set_train()
build_construct_graph(net, *inputs, execute=True)
......@@ -200,7 +223,8 @@ def bert_withlossscale_manager_train_feed():
config = get_config(version=version, batch_size=batch_size)
netwithloss = BertNetworkWithLoss(config, True)
optimizer = AdamWeightDecayDynamicLR(netwithloss.trainable_params(), 10)
lr = BertLearningRate(10)
optimizer = AdamWeightDecay(netwithloss.trainable_params(), lr)
net = ModelBert(netwithloss, optimizer=optimizer)
net.set_train()
build_construct_graph(net, *inputs, execute=True)
......@@ -24,7 +24,7 @@ cfg = edict({
'scale_factor': 2,
'scale_window': 1000,
'optimizer': 'Lamb',
'AdamWeightDecayDynamicLR': edict({
'AdamWeightDecay': edict({
'learning_rate': 3e-5,
'end_learning_rate': 1e-10,
'power': 5.0,
......@@ -33,7 +33,7 @@ cfg = edict({
'warmup_steps': 10000,
}),
'Lamb': edict({
'start_learning_rate': 3e-5,
'learning_rate': 3e-5,
'end_learning_rate': 1e-10,
'power': 10.0,
'warmup_steps': 10000,
......
......@@ -32,7 +32,7 @@ cfg = edict({
'pre_training_ckpt': '/your/path/pre_training.ckpt',
'use_crf': False,
'optimizer': 'Lamb',
'AdamWeightDecayDynamicLR': edict({
'AdamWeightDecay': edict({
'learning_rate': 2e-5,
'end_learning_rate': 1e-7,
'power': 1.0,
......@@ -40,7 +40,7 @@ cfg = edict({
'eps': 1e-6,
}),
'Lamb': edict({
'start_learning_rate': 2e-5,
'learning_rate': 2e-5,
'end_learning_rate': 1e-7,
'power': 1.0,
'decay_filter': lambda x: False,
......
......@@ -29,9 +29,11 @@ from mindspore.nn.optim import Lamb
from mindspore.train.callback import Callback
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from mindspore.train.model import Model
from mindspore.nn import learning_rate_schedule as lr_schedules
from src.bert_for_pre_training import BertNetworkWithLoss, BertTrainOneStepWithLossScaleCell
from src.bert_model import BertConfig
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
SCHEMA_DIR = "/home/workspace/mindspore_dataset/bert/example/datasetSchema.json"
......@@ -111,6 +113,25 @@ def weight_variable(shape):
return Tensor(ones)
class BertLearningRate(lr_schedules.LearningRateSchedule):
def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power):
super(BertLearningRate, self).__init__()
self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps)
self.decay_lr = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
self.greater = P.Greater()
self.one = Tensor(np.array([1.0]).astype(np.float32))
self.cast = P.Cast()
def construct(self, global_step):
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
warmup_lr = self.warmup_lr(global_step)
decay_lr = self.decay_lr(global_step)
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
return lr
class ModelCallback(Callback):
def __init__(self):
super(ModelCallback, self).__init__()
......@@ -134,9 +155,15 @@ def test_bert_tdt():
ds = me_de_train_dataset()
config = get_config(version='large', batch_size=16)
netwithloss = BertNetworkWithLoss(config, True)
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*ds.get_repeat_count(),
start_learning_rate=5e-5, end_learning_rate=1e-9,
power=10.0, warmup_steps=0, weight_decay=0.01)
lr = BertLearningRate(decay_steps=ds.get_dataset_size()*ds.get_repeat_count(), learning_rate=5e-5,
end_learning_rate=1e-9, power=10.0, warmup_steps=0)
decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()
no_decay_filter = lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower()
decay_params = list(filter(decay_filter, net_with_loss.trainable_params()))
other_params = list(filter(no_decay_filter, net_with_loss.trainable_params()))
group_params = [{'params': decay_params, 'weight_decay': 0.01},
{'params': other_params}]
optimizer = Lamb(group_params, lr)
scale_window = 3
scale_manager = DynamicLossScaleManager(262144, 2, scale_window)
netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer,
......
......@@ -33,6 +33,7 @@ from mindspore.nn.optim import Lamb
from mindspore.train.callback import Callback
from mindspore.train.loss_scale_manager import DynamicLossScaleManager
from mindspore.train.model import Model
import mindspore.nn.learning_rate_schedule as lr_schedules
_current_dir = os.path.dirname(os.path.realpath(__file__))
DATA_DIR = ["/home/workspace/mindspore_dataset/bert/example/examples.tfrecord"]
......@@ -125,6 +126,25 @@ def weight_variable(shape):
return Tensor(ones)
class BertLearningRate(lr_schedules.LearningRateSchedule):
def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power):
super(BertLearningRate, self).__init__()
self.warmup_lr = lr_schedules.WarmUpLR(learning_rate, warmup_steps)
self.decay_lr = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
self.greater = P.Greater()
self.one = Tensor(np.array([1.0]).astype(np.float32))
self.cast = P.Cast()
def construct(self, global_step):
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
warmup_lr = self.warmup_lr(global_step)
decay_lr = self.decay_lr(global_step)
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
return lr
class ModelCallback(Callback):
def __init__(self):
super(ModelCallback, self).__init__()
......@@ -162,9 +182,16 @@ def test_bert_percision():
batch_size = 16
config = get_config(version=version, batch_size=batch_size)
netwithloss = BertNetworkWithLoss(config, True)
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*new_repeat_count,
start_learning_rate=5e-5, end_learning_rate=1e-9,
power=10.0, warmup_steps=0, weight_decay=0.01)
lr = BertLearningRate(decay_steps=ds.get_dataset_size()*new_repeat_count,
learning_rate=5e-5, end_learning_rate=1e-9,
power=10.0, warmup_steps=0)
decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()
no_decay_filter = lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower()
decay_params = list(filter(decay_filter, net_with_loss.trainable_params()))
other_params = list(filter(no_decay_filter, net_with_loss.trainable_params()))
group_params = [{'params': decay_params, 'weight_decay': 0.01},
{'params': other_params}]
optimizer = Lamb(group_params, lr)
scale_window = 3
scale_manager = DynamicLossScaleManager(2 ** 16, 2, scale_window)
netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer,
......@@ -220,9 +247,18 @@ def test_bert_performance():
batch_size = 16
config = get_config(version=version, batch_size=batch_size)
netwithloss = BertNetworkWithLoss(config, True)
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size()*new_repeat_count,
start_learning_rate=5e-5, end_learning_rate=1e-9,
power=10.0, warmup_steps=0, weight_decay=0.01)
lr = BertLearningRate(decay_steps=ds.get_dataset_size()*new_repeat_count,
learning_rate=5e-5, end_learning_rate=1e-9,
power=10.0, warmup_steps=0)
decay_filter = lambda x: 'layernorm' not in x.name.lower() and 'bias' not in x.name.lower()
no_decay_filter = lambda x: 'layernorm' in x.name.lower() or 'bias' in x.name.lower()
decay_params = list(filter(decay_filter, net_with_loss.trainable_params()))
other_params = list(filter(no_decay_filter, net_with_loss.trainable_params()))
group_params = [{'params': decay_params, 'weight_decay': 0.01},
{'params': other_params}]
optimizer = Lamb(group_params, lr)
scale_window = 3
scale_manager = DynamicLossScaleManager(2 ** 16, 2, scale_window)
netwithgrads = BertTrainOneStepWithLossScaleCell(netwithloss, optimizer=optimizer,
......
......@@ -20,8 +20,10 @@ import mindspore.nn as nn
from mindspore import Tensor, Parameter, context
from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Adam, AdamWeightDecay, AdamWeightDecayDynamicLR
from mindspore.nn.optim import Adam, AdamWeightDecay
from mindspore.ops import operations as P
import mindspore.nn.learning_rate_schedule as lr_schedules
from mindspore.nn.dynamic_lr import polynomial_decay_lr
context.set_context(enable_sparse=True)
......@@ -112,6 +114,62 @@ def test_sparse_adam_compile():
_executor.compile(train_network, indices, label)
def test_adam_group1():
""" test_adam_group_lr_and_weight_decay """
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
net_with_loss = WithLossCell(net, loss)
all_params = net.trainable_params()
poly_decay_lr = polynomial_decay_lr(0.01, 0.0001, total_step=10, step_per_epoch=1, decay_epoch=3, power=1.0)
group_params = [{'params': [all_params[0]], 'lr': poly_decay_lr, 'weight_decay': 0.9},
{'params': [all_params[1]]}]
optimizer = nn.Adam(group_params, learning_rate=0.1)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_adam_group2():
""" test_adam_group_lr_and_weight_decay """
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
net_with_loss = WithLossCell(net, loss)
all_params = net.trainable_params()
schedule_lr = lr_schedules.PolynomialDecayLR(0.01, 0.0001, 3, power=1.0)
group_params = [{'params': [all_params[0]], 'lr': 0.02, 'weight_decay': 0.9},
{'params': [all_params[1]]}]
optimizer = nn.Adam(group_params, learning_rate=schedule_lr)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_adamweightdecay_group():
""" test_adam_group_lr_and_weight_decay """
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
net_with_loss = WithLossCell(net, loss)
all_params = net.trainable_params()
schedule_lr = lr_schedules.PolynomialDecayLR(0.01, 0.0001, 3, power=1.0)
group_params = [{'params': [all_params[0]], 'lr': 0.02, 'weight_decay': 0.9},
{'params': [all_params[1]]}]
optimizer = nn.AdamWeightDecay(group_params, learning_rate=schedule_lr)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_AdamWeightDecay_beta1():
net = Net()
print("**********", net.get_parameters())
......@@ -131,20 +189,6 @@ def test_AdamWeightDecay_e():
AdamWeightDecay(net.get_parameters(), eps=-0.1, learning_rate=0.1)
def test_AdamWeightDecayDynamicLR():
""" test_AdamWeightDecayDynamicLR """
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = AdamWeightDecayDynamicLR(net.trainable_params(), decay_steps=20, learning_rate=0.1)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_adam_mindspore_with_empty_params():
net = nn.Flatten()
with pytest.raises(ValueError, match=r"Optimizer got an empty parameter list"):
......
......@@ -14,7 +14,6 @@
# ============================================================================
""" test lamb """
import numpy as np
import pytest
import mindspore.nn as nn
from mindspore import Tensor, Parameter
......@@ -22,6 +21,27 @@ from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Lamb
from mindspore.ops import operations as P
import mindspore.common.dtype as mstype
from mindspore.nn.learning_rate_schedule import LearningRateSchedule, PolynomialDecayLR, WarmUpLR
class LambLearningRate(LearningRateSchedule):
def __init__(self, learning_rate, end_learning_rate, warmup_steps, decay_steps, power):
super(LambLearningRate, self).__init__()
self.warmup_lr = WarmUpLR(learning_rate, warmup_steps)
self.decay_lr = PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
self.warmup_steps = Tensor(np.array([warmup_steps]).astype(np.float32))
self.greater = P.Greater()
self.one = Tensor(np.array([1.0]).astype(np.float32))
self.cast = P.Cast()
def construct(self, global_step):
is_warmup = self.cast(self.greater(self.warmup_steps, global_step), mstype.float32)
warmup_lr = self.warmup_lr(global_step)
decay_lr = self.decay_lr(global_step)
lr = (self.one - is_warmup) * decay_lr + is_warmup * warmup_lr
return lr
class Net(nn.Cell):
......@@ -51,27 +71,49 @@ class NetWithoutWeight(nn.Cell):
return x
def test_lamb_compile():
def test_lamb_compile_dynamic_lr():
""" test_Lamb_compile """
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Lamb(net.trainable_params(), decay_steps=10)
warmup_decay_lr = LambLearningRate(0.01, 0.0001, 10, 20, 1.0)
optimizer = Lamb(net.trainable_params(), warmup_decay_lr)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_lamb_error():
def test_lamb_compile():
""" test_Lamb_compile """
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
with pytest.raises(TypeError):
Lamb(net.get_parameters(), decay_steps=6, warmup_steps=5.0)
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
with pytest.raises(TypeError):
Lamb(net.get_parameters(), decay_steps=1.0)
optimizer = Lamb(net.trainable_params(), 0.02, 0.9)
with pytest.raises(ValueError):
Lamb(net.get_parameters(), decay_steps=0)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_lamb_group():
""" test_Lamb_group_compile """
inputs = Tensor(np.ones([1, 64]).astype(np.float32))
label = Tensor(np.zeros([1, 10]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
warmup_decay_lr = LambLearningRate(0.01, 0.0001, 10, 20, 1.0)
all_params = net.trainable_params()
group_params = [{'params': [all_params[0]], 'lr': warmup_decay_lr, 'weight_decay': 0.9},
{'params': [all_params[1]]}]
optimizer = Lamb(group_params, 0.02)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
......@@ -18,7 +18,7 @@ import pytest
from mindspore import Tensor
from mindspore.common.parameter import Parameter
from mindspore.nn.optim import Optimizer, SGD, Adam, AdamWeightDecay, AdamWeightDecayDynamicLR
from mindspore.nn.optim import Optimizer, SGD, Adam, AdamWeightDecay
class IterableObjc:
......@@ -81,10 +81,6 @@ class TestNullParam():
with pytest.raises(ValueError):
AdamWeightDecay(None)
def test_AdamWeightDecayDynamicLR_init(self):
with pytest.raises(ValueError):
AdamWeightDecayDynamicLR(None, 10)
def test_Sgd_init(self):
with pytest.raises(ValueError):
SGD(None)
......@@ -101,10 +97,6 @@ class TestUnsupportParam():
with pytest.raises(TypeError):
AdamWeightDecay(9)
def test_AdamWeightDecayDynamicLR_init(self):
with pytest.raises(TypeError):
AdamWeightDecayDynamicLR(0.5, 10)
def test_Sgd_init(self):
with pytest.raises(TypeError):
paramsTensor = Parameter(Tensor(np.zeros([1, 2, 3])), "x")
......
......@@ -37,6 +37,7 @@ class Net(nn.Cell):
x = self.biasAdd(self.matmul(x, self.weight), self.bias)
return x
class NetWithSparseGatherV2(nn.Cell):
""" NetWithSparseGatherV2 definition """
def __init__(self):
......
......@@ -28,7 +28,7 @@ decay_epoch = 2
min_lr = 0.01
max_lr = 0.1
power = 0.5
warmup_epoch = 2
class TestInputs:
def test_milestone1(self):
......@@ -234,3 +234,8 @@ def test_polynomial_decay():
lr2 = dr.polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_epoch, decay_epoch, power,
True)
assert len(lr2) == total_step
def test_warmup():
lr1 = dr.warmup_lr(learning_rate, total_step, step_per_epoch, warmup_epoch)
assert len(lr1) == total_step
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
""" Test Dynamic Learning Rate """
import pytest
from mindspore import Tensor, Parameter
from mindspore.nn import learning_rate_schedule as lr_schedules
from mindspore.common.api import _executor
import mindspore.common.dtype as mstype
learning_rate = 0.1
end_learning_rate = 0.01
decay_rate = 0.9
decay_steps = 4
warmup_steps = 2
min_lr = 0.01
max_lr = 0.1
power = 0.5
global_step = Parameter(Tensor(2, mstype.int32), 'global_step')
class TestInit:
def test_learning_rate_type(self):
lr = True
with pytest.raises(TypeError):
lr_schedules.ExponentialDecayLR(lr, decay_rate, decay_steps)
with pytest.raises(TypeError):
lr_schedules.PolynomialDecayLR(lr, end_learning_rate, decay_steps, power)
def test_learning_rate_value(self):
lr = -1.0
with pytest.raises(ValueError):
lr_schedules.ExponentialDecayLR(lr, decay_rate, decay_steps)
with pytest.raises(ValueError):
lr_schedules.PolynomialDecayLR(lr, end_learning_rate, decay_steps, power)
def test_end_learning_rate_type(self):
lr = True
with pytest.raises(TypeError):
lr_schedules.PolynomialDecayLR(learning_rate, lr, decay_steps, power)
def test_end_learning_rate_value(self):
lr = -1.0
with pytest.raises(ValueError):
lr_schedules.PolynomialDecayLR(learning_rate, lr, decay_steps, power)
def test_decay_rate_type(self):
rate = 'a'
with pytest.raises(TypeError):
lr_schedules.ExponentialDecayLR(learning_rate, rate, decay_steps)
def test_decay_rate_value(self):
rate = -1.0
with pytest.raises(ValueError):
lr_schedules.ExponentialDecayLR(learning_rate, rate, decay_steps)
def test_decay_steps_type(self):
decay_steps_e = 'm'
with pytest.raises(TypeError):
lr_schedules.ExponentialDecayLR(learning_rate, decay_rate, decay_steps_e)
with pytest.raises(TypeError):
lr_schedules.CosineDecayLR(min_lr, max_lr, decay_steps_e)
with pytest.raises(TypeError):
lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps_e, power)
def test_decay_steps_value(self):
decay_steps_e = -2
with pytest.raises(ValueError):
lr_schedules.ExponentialDecayLR(learning_rate, decay_rate, decay_steps_e)
with pytest.raises(ValueError):
lr_schedules.CosineDecayLR(min_lr, max_lr, decay_steps_e)
with pytest.raises(ValueError):
lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps_e, power)
def test_is_stair(self):
is_stair = 1
with pytest.raises(TypeError):
lr_schedules.ExponentialDecayLR(learning_rate, decay_rate, decay_steps, is_stair)
def test_min_lr_type(self):
min_lr1 = True
with pytest.raises(TypeError):
lr_schedules.CosineDecayLR(min_lr1, max_lr, decay_steps)
def test_min_lr_value(self):
min_lr1 = -1.0
with pytest.raises(ValueError):
lr_schedules.CosineDecayLR(min_lr1, max_lr, decay_steps)
def test_max_lr_type(self):
max_lr1 = 'a'
with pytest.raises(TypeError):
lr_schedules.CosineDecayLR(min_lr, max_lr1, decay_steps)
def test_max_lr_value(self):
max_lr1 = -1.0
with pytest.raises(ValueError):
lr_schedules.CosineDecayLR(min_lr, max_lr1, decay_steps)
def test_power(self):
power1 = True
with pytest.raises(TypeError):
lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power1)
def test_exponential_decay():
lr_schedule = lr_schedules.ExponentialDecayLR(learning_rate, decay_rate, decay_steps, True)
_executor.compile(lr_schedule, global_step)
def test_enatural_exp_decay():
lr_schedule = lr_schedules.NaturalExpDecayLR(learning_rate, decay_rate, decay_steps, True)
_executor.compile(lr_schedule, global_step)
def test_inverse_decay():
lr_schedule = lr_schedules.InverseDecayLR(learning_rate, decay_rate, decay_steps, True)
_executor.compile(lr_schedule, global_step)
def test_cosine_decay():
lr_schedule = lr_schedules.CosineDecayLR(min_lr, max_lr, decay_steps)
_executor.compile(lr_schedule, global_step)
def test_polynomial_decay():
lr_schedule = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power)
_executor.compile(lr_schedule, global_step)
def test_polynomial_decay2():
lr_schedule = lr_schedules.PolynomialDecayLR(learning_rate, end_learning_rate, decay_steps, power, True)
_executor.compile(lr_schedule, global_step)
def test_warmup():
lr_schedule = lr_schedules.WarmUpLR(learning_rate, warmup_steps)
_executor.compile(lr_schedule, global_step)
......@@ -152,7 +152,7 @@ def test_compile_fp16_overflow():
net = NetFP16(16, 16)
loss = MSELoss()
optimizer = Lamb(net.trainable_params(), decay_steps=10, warmup_steps=5)
optimizer = Lamb(net.trainable_params(), learning_rate=0.01)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepWithLossScaleCell(net_with_loss, optimizer)
train_network.set_train()
......
......@@ -104,9 +104,11 @@ def test_group_dynamic_1():
assert opt.is_group_params_ordered is True
for lr, param, order_param in zip(opt.learning_rate, opt.parameters, net.trainable_params()):
if param in conv_params:
assert np.all(lr.data.asnumpy() == Tensor(np.array([conv_lr] * 3).astype(np.float32)).asnumpy())
assert np.all(lr.learning_rate.data.asnumpy() == \
Tensor(np.array([conv_lr] * 3).astype(np.float32)).asnumpy())
else:
assert np.all(lr.data.asnumpy() == Tensor(np.array(list(default_lr)).astype(np.float32)).asnumpy())
assert np.all(lr.learning_rate.data.asnumpy() == \
Tensor(np.array(list(default_lr)).astype(np.float32)).asnumpy())
assert param.name == order_param.name
......@@ -134,9 +136,11 @@ def test_group_dynamic_2():
assert opt.dynamic_lr is True
for lr, param in zip(opt.learning_rate, opt.parameters):
if param in conv_params:
assert np.all(lr.data.asnumpy() == Tensor(np.array(list(conv_lr)).astype(np.float32)).asnumpy())
assert np.all(lr.learning_rate.data.asnumpy() == \
Tensor(np.array(list(conv_lr)).astype(np.float32)).asnumpy())
else:
assert np.all(lr.data.asnumpy() == Tensor(np.array([default_lr] * 3).astype(np.float32)).asnumpy())
assert np.all(lr.learning_rate.data.asnumpy() == \
Tensor(np.array([default_lr] * 3).astype(np.float32)).asnumpy())
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, opt)
......@@ -157,7 +161,7 @@ def test_group_dynamic_no_same_size():
def test_group_not_float_lr():
net = LeNet5()
conv_lr = 1
conv_lr = np.array(1)
default_lr = 0.3
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
......@@ -169,7 +173,7 @@ def test_group_not_float_lr():
def test_group_not_float_weight_decay():
net = LeNet5()
conv_weight_decay = 1
conv_weight_decay = np.array(1)
conv_params = list(filter(lambda x: 'conv' in x.name, net.trainable_params()))
no_conv_params = list(filter(lambda x: 'conv' not in x.name, net.trainable_params()))
group_params = [{'params': conv_params, 'weight_decay': conv_weight_decay},
......@@ -238,11 +242,15 @@ def test_get_lr_parameter_with_group():
assert opt.is_group_lr is True
for param in opt.parameters:
lr = opt.get_lr_parameter(param)
assert lr.name == 'lr_' + param.name
if 'conv' in param.name:
cur_name = 'learning_rate_group_' + '0'
else:
cur_name = 'learning_rate_group_' + '1'
assert lr.name == cur_name
lr_list = opt.get_lr_parameter(conv_params)
for lr, param in zip(lr_list, conv_params):
assert lr.name == 'lr_' + param.name
assert lr.name == 'learning_rate_group_' + '0'
def test_get_lr_parameter_with_order_group():
......@@ -256,7 +264,11 @@ def test_get_lr_parameter_with_order_group():
assert opt.is_group_lr is True
for param in opt.parameters:
lr = opt.get_lr_parameter(param)
assert lr.name == 'lr_' + param.name
if 'conv' in param.name:
cur_name = 'learning_rate_group_' + '0'
else:
cur_name = 'learning_rate'
assert lr.name == cur_name
def test_get_lr_parameter_with_no_group():
......@@ -271,7 +283,7 @@ def test_get_lr_parameter_with_no_group():
assert opt.is_group_lr is False
for param in opt.parameters:
lr = opt.get_lr_parameter(param)
assert lr.name == opt.learning_rate.name
assert lr.name == 'learning_rate'
params_error = [1, 2, 3]
with pytest.raises(TypeError):
......@@ -305,7 +317,11 @@ def test_order_params_1():
assert decay_flags is False
assert param.name == order_param.name
assert lr.name == 'lr_' + param.name
if 'conv' in param.name:
assert lr.name == 'learning_rate'
elif 'bias' in param.name:
assert lr.name == 'learning_rate_group_' + '1'
def test_order_params_2():
......@@ -323,8 +339,9 @@ def test_order_params_2():
assert opt.is_group is True
assert opt.is_group_lr is True
assert opt.is_group_params_ordered is True
all_lr = opt.get_lr_parameter(fc1_params+conv_params)
for weight_decay, decay_flags, lr, param, order_param in zip(
opt.weight_decay, opt.decay_flags, opt.learning_rate, opt.parameters, fc1_params+conv_params):
opt.weight_decay, opt.decay_flags, all_lr, opt.parameters, fc1_params+conv_params):
if param in conv_params:
assert np.all(lr.data.asnumpy() == Tensor(np.array([default_lr] * 3), mstype.float32).asnumpy())
assert weight_decay == conv_weight_decay
......@@ -339,8 +356,10 @@ def test_order_params_2():
assert decay_flags is False
assert param.name == order_param.name
assert lr.name == 'lr_' + param.name
if 'conv' in param.name:
assert lr.name == 'learning_rate'
elif 'fc1' in param.name:
assert lr.name == 'learning_rate_group_' + '0'
def test_get_order_params_with_not_same():
net = LeNet5()
......
......@@ -20,7 +20,7 @@ import mindspore.nn as nn
from mindspore import Tensor
from mindspore.common.api import _executor
from mindspore.nn import TrainOneStepCell, WithLossCell
from mindspore.nn.optim import Adam, AdamWeightDecay, AdamWeightDecayDynamicLR, Lamb
from mindspore.nn.optim import Adam, AdamWeightDecay, Lamb
from mindspore.ops import operations as P
from mindspore import context
......@@ -51,23 +51,8 @@ class Net(nn.Cell):
return s
def test_AdamWeightDecayDynamicLR():
""" test_AdamWeightDecayDynamicLR """
context.set_auto_parallel_context(parallel_mode="data_parallel", device_num=2, enable_parallel_optimizer=True)
inputs = Tensor(np.ones([32, 128]).astype(np.float32))
label = Tensor(np.zeros([32, 768]).astype(np.float32))
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = AdamWeightDecayDynamicLR(net.trainable_params(), decay_steps=20, learning_rate=0.1)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
_executor.compile(train_network, inputs, label)
def test_AdamWeightDecay():
""" test_AdamWeightDecayDynamicLR """
""" test_AdamWeightDecay """
context.set_auto_parallel_context(parallel_mode="data_parallel", device_num=2, enable_parallel_optimizer=True)
inputs = Tensor(np.ones([32, 128]).astype(np.float32))
label = Tensor(np.zeros([32, 768]).astype(np.float32))
......@@ -89,7 +74,7 @@ def test_lamb_compile():
net = Net()
net.set_train()
loss = nn.SoftmaxCrossEntropyWithLogits()
optimizer = Lamb(net.trainable_params(), decay_steps=10)
optimizer = Lamb(net.trainable_params(), learning_rate=0.1)
net_with_loss = WithLossCell(net, loss)
train_network = TrainOneStepCell(net_with_loss, optimizer)
......@@ -102,9 +87,9 @@ def test_edge_case():
net = Net()
with pytest.raises(RuntimeError):
context.set_auto_parallel_context(parallel_mode="stand_alone")
Lamb(net.trainable_params(), decay_steps=10)
Lamb(net.trainable_params(), learning_rate=0.1)
with pytest.raises(RuntimeError):
Adam(net.trainable_params(), learning_rate=0.1)
with pytest.raises(RuntimeError):
context.set_auto_parallel_context(device_num=16)
Lamb(net.trainable_params(), decay_steps=10)
Lamb(net.trainable_params(), learning_rate=0.1)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册