提交 6b994518 编写于 作者: Y yoonlee666

fix bugs in bert example script

上级 c0fd303e
......@@ -19,7 +19,7 @@ Bert evaluation script.
import os
from src import BertModel, GetMaskedLMOutput
from evaluation_config import cfg, bert_net_cfg
from src.evaluation_config import cfg, bert_net_cfg
import mindspore.common.dtype as mstype
from mindspore import context
from mindspore.common.tensor import Tensor
......@@ -87,17 +87,18 @@ class BertPretrainEva(nn.Cell):
self.cast = P.Cast()
def construct(self, input_ids, input_mask, token_type_id, masked_pos, masked_ids, nsp_label, masked_weights):
def construct(self, input_ids, input_mask, token_type_id, masked_pos, masked_ids, masked_weights, nsp_label):
bs, _ = self.shape(input_ids)
probs = self.bert(input_ids, input_mask, token_type_id, masked_pos)
index = self.argmax(probs)
index = self.reshape(index, (bs, -1))
eval_acc = self.equal(index, masked_ids)
eval_acc1 = self.cast(eval_acc, mstype.float32)
acc = self.mean(eval_acc1)
P.Print()(acc)
self.total += self.shape(probs)[0]
self.acc += self.sum(eval_acc1)
real_acc = eval_acc1 * masked_weights
acc = self.sum(real_acc)
total = self.sum(masked_weights)
self.total += total
self.acc += acc
return acc, self.total, self.acc
......@@ -107,8 +108,8 @@ def get_enwiki_512_dataset(batch_size=1, repeat_count=1, distribute_file=''):
'''
ds = de.TFRecordDataset([cfg.data_file], cfg.schema_file, columns_list=["input_ids", "input_mask", "segment_ids",
"masked_lm_positions", "masked_lm_ids",
"next_sentence_labels",
"masked_lm_weights"])
"masked_lm_weights",
"next_sentence_labels"])
type_cast_op = C.TypeCast(mstype.int32)
ds = ds.map(input_columns="segment_ids", operations=type_cast_op)
ds = ds.map(input_columns="input_mask", operations=type_cast_op)
......@@ -143,7 +144,8 @@ def MLM_eval():
Evaluate function
'''
_, dataset, net_for_pretraining = bert_predict()
net = Model(net_for_pretraining, eval_network=net_for_pretraining, eval_indexes=[0, 1, 2], metrics={myMetric()})
net = Model(net_for_pretraining, eval_network=net_for_pretraining, eval_indexes=[0, 1, 2],
metrics={'name': myMetric()})
res = net.eval(dataset, dataset_sink_mode=False)
print("==============================================================")
for _, v in res.items():
......
......@@ -66,6 +66,8 @@ def run_pretrain():
parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path")
parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, "
"default is 1000.")
parser.add_argument("--train_steps", type=int, default=-1, help="Training Steps, default is -1, "
"meaning run all steps according to epoch number.")
parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
parser.add_argument("--data_dir", type=str, default="", help="Data path, it is better to use absolute path")
parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path")
......@@ -93,11 +95,12 @@ def run_pretrain():
ds, new_repeat_count = create_bert_dataset(args_opt.epoch_size, device_num, rank, args_opt.do_shuffle,
args_opt.enable_data_sink, args_opt.data_sink_steps,
args_opt.data_dir, args_opt.schema_dir)
if args_opt.train_steps > 0:
new_repeat_count = min(new_repeat_count, args_opt.train_steps // args_opt.data_sink_steps)
netwithloss = BertNetworkWithLoss(bert_net_cfg, True)
if cfg.optimizer == 'Lamb':
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size() * ds.get_repeat_count(),
optimizer = Lamb(netwithloss.trainable_params(), decay_steps=ds.get_dataset_size() * new_repeat_count,
start_learning_rate=cfg.Lamb.start_learning_rate, end_learning_rate=cfg.Lamb.end_learning_rate,
power=cfg.Lamb.power, warmup_steps=cfg.Lamb.warmup_steps, weight_decay=cfg.Lamb.weight_decay,
eps=cfg.Lamb.eps)
......@@ -106,7 +109,7 @@ def run_pretrain():
momentum=cfg.Momentum.momentum)
elif cfg.optimizer == 'AdamWeightDecayDynamicLR':
optimizer = AdamWeightDecayDynamicLR(netwithloss.trainable_params(),
decay_steps=ds.get_dataset_size() * ds.get_repeat_count(),
decay_steps=ds.get_dataset_size() * new_repeat_count,
learning_rate=cfg.AdamWeightDecayDynamicLR.learning_rate,
end_learning_rate=cfg.AdamWeightDecayDynamicLR.end_learning_rate,
power=cfg.AdamWeightDecayDynamicLR.power,
......
......@@ -19,8 +19,8 @@ import json
import numpy as np
import mindspore.common.dtype as mstype
from mindspore.common.tensor import Tensor
import tokenization
from sample_process import label_generation, process_one_example_p
from . import tokenization
from .sample_process import label_generation, process_one_example_p
from .evaluation_config import cfg
from .CRF import postprocess
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册