Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
600c2652
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
600c2652
编写于
8月 05, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
8月 05, 2020
浏览文件
操作
浏览文件
下载
差异文件
!3941 update gpu resnet101 scripts
Merge pull request !3941 from panfengfeng/fix_gpu_scripts_resnet101
上级
34214e8f
5714e079
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
104 addition
and
12 deletion
+104
-12
mindspore/train/dataset_helper.py
mindspore/train/dataset_helper.py
+1
-1
model_zoo/official/cv/resnet/README.md
model_zoo/official/cv/resnet/README.md
+6
-3
model_zoo/official/cv/resnet/scripts/run_eval_gpu.sh
model_zoo/official/cv/resnet/scripts/run_eval_gpu.sh
+84
-0
model_zoo/official/cv/resnet/scripts/run_standalone_train_gpu.sh
...oo/official/cv/resnet/scripts/run_standalone_train_gpu.sh
+1
-1
model_zoo/official/cv/resnet/train.py
model_zoo/official/cv/resnet/train.py
+12
-7
未找到文件。
mindspore/train/dataset_helper.py
浏览文件 @
600c2652
...
...
@@ -52,7 +52,7 @@ class DatasetHelper:
sink_size (int): Control the amount of data each sink.
If sink_size=-1, sink the complete dataset each epoch.
If sink_size>0, sink sink_size data each epoch. Default: -1.
epoch_num (int): Control the number of epoch data to send.
epoch_num (int): Control the number of epoch data to send.
Default: 1.
Examples:
>>> dataset_helper = DatasetHelper(dataset)
...
...
model_zoo/official/cv/resnet/README.md
浏览文件 @
600c2652
...
...
@@ -44,6 +44,9 @@ ImageNet2012
├── run_distribute_train.sh
# launch distributed training(8 pcs)
├── run_eval.sh
# launch evaluation
└── run_standalone_train.sh
# launch standalone training(1 pcs)
├── run_distribute_train_gpu.sh
# launch gpu distributed training(8 pcs)
├── run_eval_gpu.sh
# launch gpu evaluation
└── run_standalone_train_gpu.sh
# launch gpu standalone training(1 pcs)
├── src
├── config.py
# parameter configuration
├── dataset.py
# data preprocessing
...
...
@@ -241,11 +244,11 @@ result: {'top_5_accuracy': 0.9429417413572343, 'top_1_accuracy': 0.7853513124199
### Running on GPU
```
# distributed training example
mpirun -n 8 python train.py --net=resnet50 --dataset=cifar10 --dataset_path=~/cifar-10-batches-bin --device_target="GPU" --run_distribute=True
sh run_distribute_train_gpu.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
# standalone training example
python train.py --net=resnet50 --dataset=cifar10 --dataset_path=~/cifar-10-batches-bin --device_target="GPU"
sh run_standalone_train_gpu.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)
# infer example
python eval.py --net=resnet50 --dataset=cifar10 --dataset_path=~/cifar10-10-verify-bin --device_target="GPU" --checkpoint_path=resnet-90_195.ckpt
sh run_eval_gpu.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]
```
model_zoo/official/cv/resnet/scripts/run_eval_gpu.sh
0 → 100755
浏览文件 @
600c2652
#!/bin/bash
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
if
[
$#
!=
4
]
then
echo
"Usage: sh run_eval_gpu.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH] [CHECKPOINT_PATH]"
exit
1
fi
if
[
$1
!=
"resnet50"
]
&&
[
$1
!=
"resnet101"
]
then
echo
"error: the selected net is neither resnet50 nor resnet101"
exit
1
fi
if
[
$2
!=
"cifar10"
]
&&
[
$2
!=
"imagenet2012"
]
then
echo
"error: the selected dataset is neither cifar10 nor imagenet2012"
exit
1
fi
if
[
$1
==
"resnet101"
]
&&
[
$2
==
"cifar10"
]
then
echo
"error: evaluating resnet101 with cifar10 dataset is unsupported now!"
exit
1
fi
get_real_path
(){
if
[
"
${
1
:0:1
}
"
==
"/"
]
;
then
echo
"
$1
"
else
echo
"
$(
realpath
-m
$PWD
/
$1
)
"
fi
}
PATH1
=
$(
get_real_path
$3
)
PATH2
=
$(
get_real_path
$4
)
if
[
!
-d
$PATH1
]
then
echo
"error: DATASET_PATH=
$PATH1
is not a directory"
exit
1
fi
if
[
!
-f
$PATH2
]
then
echo
"error: CHECKPOINT_PATH=
$PATH2
is not a file"
exit
1
fi
ulimit
-u
unlimited
export
DEVICE_NUM
=
1
export
DEVICE_ID
=
0
export
RANK_SIZE
=
$DEVICE_NUM
export
RANK_ID
=
0
if
[
-d
"eval"
]
;
then
rm
-rf
./eval
fi
mkdir
./eval
cp
../
*
.py ./eval
cp
*
.sh ./eval
cp
-r
../src ./eval
cd
./eval
||
exit
env
>
env.log
echo
"start evaluation for device
$DEVICE_ID
"
python eval.py
--net
=
$1
--dataset
=
$2
--dataset_path
=
$PATH1
--checkpoint_path
=
$PATH2
--device_target
=
"GPU"
&> log &
cd
..
model_zoo/official/cv/resnet/scripts/run_standalone_train_gpu.sh
浏览文件 @
600c2652
...
...
@@ -16,7 +16,7 @@
if
[
$#
!=
3
]
&&
[
$#
!=
4
]
then
echo
"Usage: sh run_standalone_train.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)"
echo
"Usage: sh run_standalone_train
_gpu
.sh [resnet50|resnet101] [cifar10|imagenet2012] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)"
exit
1
fi
...
...
model_zoo/official/cv/resnet/train.py
浏览文件 @
600c2652
...
...
@@ -157,13 +157,18 @@ if __name__ == '__main__':
else
:
loss
=
SoftmaxCrossEntropyWithLogits
(
sparse
=
True
,
reduction
=
"mean"
,
is_grad
=
False
,
num_classes
=
config
.
class_num
)
if
args_opt
.
net
==
"resnet101"
:
opt
=
Momentum
(
filter
(
lambda
x
:
x
.
requires_grad
,
net
.
get_parameters
()),
lr
,
config
.
momentum
,
config
.
weight_decay
,
config
.
loss_scale
)
loss_scale
=
FixedLossScaleManager
(
config
.
loss_scale
,
drop_overflow_update
=
False
)
# Mixed precision
model
=
Model
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
loss_scale_manager
=
loss_scale
,
metrics
=
{
'acc'
},
amp_level
=
"O2"
,
keep_batchnorm_fp32
=
True
)
else
:
## fp32 training
opt
=
Momentum
(
filter
(
lambda
x
:
x
.
requires_grad
,
net
.
get_parameters
()),
lr
,
config
.
momentum
,
config
.
weight_decay
)
model
=
Model
(
net
,
loss_fn
=
loss
,
optimizer
=
opt
,
metrics
=
{
'acc'
})
# # Mixed precision
# loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
# opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay, config.loss_scale)
# model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'}, amp_level="O2")
# define callbacks
time_cb
=
TimeMonitor
(
data_size
=
step_size
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录