提交 51946721 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!5163 [MS][LITE][GPU]matmul support fp16

Merge pull request !5163 from chenzupeng/master-lite
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
__constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST; __constant sampler_t smp_zero = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | CLK_FILTER_NEAREST;
__kernel void MatMul(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias, __kernel void MatMul(__read_only image2d_t input, __global FLT16 *weight, __read_only image2d_t bias,
__write_only image2d_t output, int2 offset_ci, int2 offset_co, int has_bias) { __write_only image2d_t output, int2 offset_ci, int2 offset_co, int has_bias) {
......
...@@ -16,7 +16,7 @@ ...@@ -16,7 +16,7 @@
#include <string> #include <string>
#include <set> #include <set>
#include "src/common/utils.h" #include "nnacl/fp32/common_func.h"
#include "src/kernel_registry.h" #include "src/kernel_registry.h"
#include "src/runtime/opencl/opencl_runtime.h" #include "src/runtime/opencl/opencl_runtime.h"
#include "src/runtime/kernel/opencl/kernel/conv2d_transpose.h" #include "src/runtime/kernel/opencl/kernel/conv2d_transpose.h"
...@@ -73,10 +73,6 @@ void Conv2dTransposeOpenCLKernel::PadWeight() { ...@@ -73,10 +73,6 @@ void Conv2dTransposeOpenCLKernel::PadWeight() {
int div_co = UP_DIV(co, C4NUM); int div_co = UP_DIV(co, C4NUM);
auto allocator = lite::opencl::OpenCLRuntime::GetInstance()->GetAllocator(); auto allocator = lite::opencl::OpenCLRuntime::GetInstance()->GetAllocator();
auto data_size = enable_fp16_ ? sizeof(float16_t) : sizeof(float); auto data_size = enable_fp16_ ? sizeof(float16_t) : sizeof(float);
using FLT = float;
if (enable_fp16_) {
using FLT = float16_t;
}
// IHWO to OHWI4(I)4(O)(converter format is IHWO) // IHWO to OHWI4(I)4(O)(converter format is IHWO)
// init padWeight_(buffer mem) // init padWeight_(buffer mem)
...@@ -97,8 +93,8 @@ void Conv2dTransposeOpenCLKernel::PadWeight() { ...@@ -97,8 +93,8 @@ void Conv2dTransposeOpenCLKernel::PadWeight() {
int ori_index = ((ci_offset * kh + kh_i) * kw + kw_i) * ci + co_offset; int ori_index = ((ci_offset * kh + kh_i) * kw + kw_i) * ci + co_offset;
if (enable_fp16_) { if (enable_fp16_) {
if (weight_dtype == kNumberTypeFloat32) { if (weight_dtype == kNumberTypeFloat32) {
reinterpret_cast<float16_t *>(padWeight_)[index++] = reinterpret_cast<uint16_t *>(padWeight_)[index++] =
lite::Float32ToShort(reinterpret_cast<float *>(origin_weight)[ori_index]); Float32ToShort(reinterpret_cast<float *>(origin_weight)[ori_index]);
} else { } else {
reinterpret_cast<float16_t *>(padWeight_)[index++] = reinterpret_cast<float16_t *>(padWeight_)[index++] =
reinterpret_cast<float16_t *>(origin_weight)[ori_index]; reinterpret_cast<float16_t *>(origin_weight)[ori_index];
...@@ -107,7 +103,11 @@ void Conv2dTransposeOpenCLKernel::PadWeight() { ...@@ -107,7 +103,11 @@ void Conv2dTransposeOpenCLKernel::PadWeight() {
reinterpret_cast<float *>(padWeight_)[index++] = reinterpret_cast<float *>(origin_weight)[ori_index]; reinterpret_cast<float *>(padWeight_)[index++] = reinterpret_cast<float *>(origin_weight)[ori_index];
} }
} else { } else {
reinterpret_cast<FLT *>(padWeight_)[index++] = 0.; if (enable_fp16_) {
reinterpret_cast<float16_t *>(padWeight_)[index++] = 0.;
} else {
reinterpret_cast<float *>(padWeight_)[index++] = 0.;
}
} }
} }
} }
...@@ -134,7 +134,7 @@ void Conv2dTransposeOpenCLKernel::PadWeight() { ...@@ -134,7 +134,7 @@ void Conv2dTransposeOpenCLKernel::PadWeight() {
if (bias_dtype == kNumberTypeFloat32 && enable_fp16_) { if (bias_dtype == kNumberTypeFloat32 && enable_fp16_) {
auto fdata = reinterpret_cast<float *>(in_tensors_[2]->Data()); auto fdata = reinterpret_cast<float *>(in_tensors_[2]->Data());
for (int i = 0; i < co; i++) { for (int i = 0; i < co; i++) {
reinterpret_cast<float16_t *>(bias_)[i] = lite::Float32ToShort(fdata[i]); reinterpret_cast<uint16_t *>(bias_)[i] = Float32ToShort(fdata[i]);
} }
} else { } else {
memcpy(bias_, in_tensors_[2]->Data(), co * data_size); memcpy(bias_, in_tensors_[2]->Data(), co * data_size);
......
...@@ -16,6 +16,7 @@ ...@@ -16,6 +16,7 @@
#include <set> #include <set>
#include <string> #include <string>
#include "nnacl/fp32/common_func.h"
#include "src/kernel_registry.h" #include "src/kernel_registry.h"
#include "src/runtime/opencl/opencl_runtime.h" #include "src/runtime/opencl/opencl_runtime.h"
#include "nnacl/fp32/matmul.h" #include "nnacl/fp32/matmul.h"
...@@ -34,7 +35,7 @@ namespace mindspore::kernel { ...@@ -34,7 +35,7 @@ namespace mindspore::kernel {
int MatMulOpenCLKernel::Init() { int MatMulOpenCLKernel::Init() {
std::string kernel_name = "MatMul"; std::string kernel_name = "MatMul";
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
enable_fp16_ = ocl_runtime->GetFp16Enable();
#ifdef PROGRAM_WITH_IL #ifdef PROGRAM_WITH_IL
kernel_ = ocl_runtime->GetKernelFromBinary(kernel_name); kernel_ = ocl_runtime->GetKernelFromBinary(kernel_name);
#else #else
...@@ -74,11 +75,12 @@ int MatMulOpenCLKernel::ReSize() { return RET_OK; } ...@@ -74,11 +75,12 @@ int MatMulOpenCLKernel::ReSize() { return RET_OK; }
void MatMulOpenCLKernel::PadWeight() { void MatMulOpenCLKernel::PadWeight() {
auto allocator = lite::opencl::OpenCLRuntime::GetInstance()->GetAllocator(); auto allocator = lite::opencl::OpenCLRuntime::GetInstance()->GetAllocator();
padWeight_ =
reinterpret_cast<FLOAT_t *>(allocator->Malloc(sizeCI.s[1] * sizeCO.s[1] * C4NUM * C4NUM * sizeof(FLOAT_t)));
padWeight_ = reinterpret_cast<FLOAT_t *>(allocator->MapBuffer(padWeight_, CL_MAP_WRITE, nullptr, true));
auto origin_weight = reinterpret_cast<FLOAT_t *>(in_tensors_.at(kWeightIndex)->Data()); size_t dtype_size = enable_fp16_ ? sizeof(float16_t) : sizeof(float);
padWeight_ = allocator->Malloc(sizeCI.s[1] * sizeCO.s[1] * C4NUM * C4NUM * dtype_size);
padWeight_ = allocator->MapBuffer(padWeight_, CL_MAP_WRITE, nullptr, true);
auto origin_weight = in_tensors_.at(kWeightIndex)->Data();
int divCI = sizeCI.s[1]; int divCI = sizeCI.s[1];
int divCO = sizeCO.s[1]; int divCO = sizeCO.s[1];
int co = sizeCO.s[0]; int co = sizeCO.s[0];
...@@ -90,9 +92,29 @@ void MatMulOpenCLKernel::PadWeight() { ...@@ -90,9 +92,29 @@ void MatMulOpenCLKernel::PadWeight() {
int src_x = i * C4NUM + l; int src_x = i * C4NUM + l;
int src_y = j * C4NUM + k; int src_y = j * C4NUM + k;
if (src_x < sizeCI.s[0] && src_y < sizeCO.s[0]) { if (src_x < sizeCI.s[0] && src_y < sizeCO.s[0]) {
padWeight_[index++] = origin_weight[src_y * sizeCI.s[0] + src_x]; if (enable_fp16_) {
if (in_tensors_.at(kWeightIndex)->data_type() == kNumberTypeFloat32) {
reinterpret_cast<uint16_t *>(padWeight_)[index++] =
Float32ToShort(reinterpret_cast<float *>(origin_weight)[src_y * sizeCI.s[0] + src_x]);
} else {
reinterpret_cast<uint16_t *>(padWeight_)[index++] =
reinterpret_cast<uint16_t *>(origin_weight)[src_y * sizeCI.s[0] + src_x];
}
} else {
if (in_tensors_.at(kWeightIndex)->data_type() == kNumberTypeFloat16) {
reinterpret_cast<float *>(padWeight_)[index++] =
ShortToFloat32(reinterpret_cast<uint16_t *>(origin_weight)[src_y * sizeCI.s[0] + src_x]);
} else { } else {
padWeight_[index++] = 0; reinterpret_cast<float *>(padWeight_)[index++] =
reinterpret_cast<float *>(origin_weight)[src_y * sizeCI.s[0] + src_x];
}
}
} else {
if (enable_fp16_) {
reinterpret_cast<float16_t *>(padWeight_)[index++] = 0;
} else {
reinterpret_cast<float *>(padWeight_)[index++] = 0;
}
} }
} }
} }
...@@ -102,17 +124,23 @@ void MatMulOpenCLKernel::PadWeight() { ...@@ -102,17 +124,23 @@ void MatMulOpenCLKernel::PadWeight() {
size_t im_dst_x, im_dst_y; size_t im_dst_x, im_dst_y;
im_dst_x = divCO; im_dst_x = divCO;
im_dst_y = 1; im_dst_y = 1;
#ifdef ENABLE_FP16
size_t img_dtype = CL_HALF_FLOAT;
#else
size_t img_dtype = CL_FLOAT; size_t img_dtype = CL_FLOAT;
#endif if (enable_fp16_) {
img_dtype = CL_HALF_FLOAT;
}
std::vector<size_t> img_size{im_dst_x, im_dst_y, img_dtype}; std::vector<size_t> img_size{im_dst_x, im_dst_y, img_dtype};
bias_ = reinterpret_cast<FLOAT_t *>(allocator->Malloc(im_dst_x * im_dst_y * C4NUM * sizeof(FLOAT_t), img_size)); bias_ = allocator->Malloc(im_dst_x * im_dst_y * C4NUM * dtype_size, img_size);
bias_ = reinterpret_cast<FLOAT_t *>(allocator->MapBuffer(bias_, CL_MAP_WRITE, nullptr, true)); bias_ = allocator->MapBuffer(bias_, CL_MAP_WRITE, nullptr, true);
memset(bias_, 0x00, divCO * C4NUM * sizeof(FLOAT_t)); memset(bias_, 0x00, divCO * C4NUM * dtype_size);
if (in_tensors_.size() >= 3) { if (in_tensors_.size() >= 3) {
memcpy(bias_, in_tensors_[2]->Data(), co * sizeof(FLOAT_t)); if (in_tensors_[2]->data_type() == kNumberTypeFloat32 && enable_fp16_) {
auto fdata = reinterpret_cast<float *>(in_tensors_[2]->Data());
for (int i = 0; i < co; i++) {
reinterpret_cast<uint16_t *>(bias_)[i] = Float32ToShort(fdata[i]);
}
} else {
memcpy(bias_, in_tensors_[2]->Data(), co * dtype_size);
}
} }
allocator->UnmapBuffer(bias_); allocator->UnmapBuffer(bias_);
} }
...@@ -121,11 +149,10 @@ int MatMulOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size) ...@@ -121,11 +149,10 @@ int MatMulOpenCLKernel::GetImageSize(size_t idx, std::vector<size_t> *img_size)
size_t im_dst_x, im_dst_y; size_t im_dst_x, im_dst_y;
im_dst_x = sizeCO.s[1]; im_dst_x = sizeCO.s[1];
im_dst_y = 1; im_dst_y = 1;
#ifdef ENABLE_FP16
size_t img_dtype = CL_HALF_FLOAT;
#else
size_t img_dtype = CL_FLOAT; size_t img_dtype = CL_FLOAT;
#endif if (enable_fp16_) {
img_dtype = CL_HALF_FLOAT;
}
img_size->clear(); img_size->clear();
std::vector<size_t> vec{im_dst_x, im_dst_y, img_dtype}; std::vector<size_t> vec{im_dst_x, im_dst_y, img_dtype};
*img_size = vec; *img_size = vec;
......
...@@ -23,7 +23,6 @@ ...@@ -23,7 +23,6 @@
#include "nnacl/conv_parameter.h" #include "nnacl/conv_parameter.h"
#include "src/runtime/opencl/opencl_runtime.h" #include "src/runtime/opencl/opencl_runtime.h"
namespace mindspore::kernel { namespace mindspore::kernel {
class MatMulOpenCLKernel : public OpenCLKernel { class MatMulOpenCLKernel : public OpenCLKernel {
...@@ -43,9 +42,10 @@ class MatMulOpenCLKernel : public OpenCLKernel { ...@@ -43,9 +42,10 @@ class MatMulOpenCLKernel : public OpenCLKernel {
private: private:
cl::Kernel kernel_; cl::Kernel kernel_;
FLOAT_t *padWeight_; void *padWeight_;
FLOAT_t *bias_; void *bias_;
bool hasBias_ = false; bool hasBias_{false};
bool enable_fp16_{false};
cl_int2 sizeCI; cl_int2 sizeCI;
cl_int2 sizeCO; cl_int2 sizeCO;
}; };
......
...@@ -22,6 +22,7 @@ ...@@ -22,6 +22,7 @@
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h" #include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/conv2d_transpose.h" #include "mindspore/lite/src/runtime/kernel/opencl/kernel/conv2d_transpose.h"
#include "mindspore/core/utils/log_adapter.h" #include "mindspore/core/utils/log_adapter.h"
#include "mindspore/lite/test/ut/src/runtime/kernel/opencl/utils_tests.h"
namespace mindspore { namespace mindspore {
class TestConv2dTransposeOpenCL : public mindspore::CommonTest { class TestConv2dTransposeOpenCL : public mindspore::CommonTest {
...@@ -29,7 +30,7 @@ class TestConv2dTransposeOpenCL : public mindspore::CommonTest { ...@@ -29,7 +30,7 @@ class TestConv2dTransposeOpenCL : public mindspore::CommonTest {
TestConv2dTransposeOpenCL() {} TestConv2dTransposeOpenCL() {}
}; };
void RunTestCase(const std::vector<int> shape, const std::vector<std::string> file_path, bool fp16) { void RunTestCaseConv2dTranspose(const std::vector<int> shape, const std::vector<std::string> file_path, bool fp16) {
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
if (fp16) { if (fp16) {
ocl_runtime->SetFp16Enable(true); ocl_runtime->SetFp16Enable(true);
...@@ -146,32 +147,12 @@ void RunTestCase(const std::vector<int> shape, const std::vector<std::string> fi ...@@ -146,32 +147,12 @@ void RunTestCase(const std::vector<int> shape, const std::vector<std::string> fi
pGraph->Init(); pGraph->Init();
memcpy(inputs[0]->Data(), input_data, input_size); memcpy(inputs[0]->Data(), input_data, input_size);
pGraph->Run(); pGraph->Run();
using FLT = float;
if (fp16) { if (fp16) {
using FLT = float16_t; CompareOutput(tensor_out, file_path[3], static_cast<float16_t>(1e-2), 2e-2);
} else {
CompareOutput(tensor_out, file_path[3], static_cast<float>(1e-5));
} }
std::cout << "==================output data=================" << std::endl;
FLT *output_data = reinterpret_cast<FLT *>(tensor_out->Data());
std::cout << std::endl;
size_t output_size;
std::string output_path = file_path[3];
auto correct_data = reinterpret_cast<FLT *>(mindspore::lite::ReadFile(output_path.c_str(), &output_size));
if (correct_data == nullptr) {
MS_LOG(ERROR) << "correct_data create error.";
return;
}
int size_n = oh * ow * co;
size_n = size_n > 100 ? 100 : size_n;
for (int i = 0; i < size_n; i++) {
std::cout << output_data[i] << ", " << correct_data[i] << " ";
if ((i + 1) % co == 0) {
std::cout << std::endl;
}
}
std::cout << std::endl;
// compare
CommonTest::CompareOutputData(output_data, correct_data, oh * ow * co, 0.00001);
inputs[0]->SetData(nullptr); inputs[0]->SetData(nullptr);
outputs[0]->SetData(nullptr); outputs[0]->SetData(nullptr);
MS_LOG(INFO) << "Test Conv2dTransposeFp32 passed"; MS_LOG(INFO) << "Test Conv2dTransposeFp32 passed";
...@@ -190,7 +171,7 @@ TEST_F(TestConv2dTransposeOpenCL, Conv2dTransposeFp32) { ...@@ -190,7 +171,7 @@ TEST_F(TestConv2dTransposeOpenCL, Conv2dTransposeFp32) {
"./test_data/conv2d_transpose/conv2d_transpose_fp32_weight.bin", "./test_data/conv2d_transpose/conv2d_transpose_fp32_weight.bin",
"./test_data/conv2d_transpose/conv2d_transpose_fp32_bias.bin", "./test_data/conv2d_transpose/conv2d_transpose_fp32_bias.bin",
"./test_data/conv2d_transpose/conv2d_transpose_fp32_output.bin"}; "./test_data/conv2d_transpose/conv2d_transpose_fp32_output.bin"};
RunTestCase(shape, file_path, false); RunTestCaseConv2dTranspose(shape, file_path, false);
} }
TEST_F(TestConv2dTransposeOpenCL, Conv2dTransposeFp16) { TEST_F(TestConv2dTransposeOpenCL, Conv2dTransposeFp16) {
...@@ -207,6 +188,6 @@ TEST_F(TestConv2dTransposeOpenCL, Conv2dTransposeFp16) { ...@@ -207,6 +188,6 @@ TEST_F(TestConv2dTransposeOpenCL, Conv2dTransposeFp16) {
"./test_data/conv2d_transpose/conv2d_transpose_fp16_weight.bin", "./test_data/conv2d_transpose/conv2d_transpose_fp16_weight.bin",
"./test_data/conv2d_transpose/conv2d_transpose_fp16_bias.bin", "./test_data/conv2d_transpose/conv2d_transpose_fp16_bias.bin",
"./test_data/conv2d_transpose/conv2d_transpose_fp16_output.bin"}; "./test_data/conv2d_transpose/conv2d_transpose_fp16_output.bin"};
RunTestCase(shape, file_path, true); RunTestCaseConv2dTranspose(shape, file_path, true);
} }
} // namespace mindspore } // namespace mindspore
...@@ -21,6 +21,7 @@ ...@@ -21,6 +21,7 @@
#include "mindspore/lite/src/runtime/opencl/opencl_runtime.h" #include "mindspore/lite/src/runtime/opencl/opencl_runtime.h"
#include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h" #include "mindspore/lite/src/runtime/kernel/opencl/subgraph_opencl_kernel.h"
#include "mindspore/lite/src/runtime/kernel/opencl/kernel/matmul.h" #include "mindspore/lite/src/runtime/kernel/opencl/kernel/matmul.h"
#include "mindspore/lite/test/ut/src/runtime/kernel/opencl/utils_tests.h"
namespace mindspore { namespace mindspore {
class TestMatMulOpenCL : public mindspore::CommonTest { class TestMatMulOpenCL : public mindspore::CommonTest {
...@@ -28,29 +29,32 @@ class TestMatMulOpenCL : public mindspore::CommonTest { ...@@ -28,29 +29,32 @@ class TestMatMulOpenCL : public mindspore::CommonTest {
TestMatMulOpenCL() {} TestMatMulOpenCL() {}
}; };
TEST_F(TestMatMulOpenCL, MatMulFp32) { void RunTestCaseMatMul(const std::vector<int> shape, const std::vector<std::string> file_path, bool fp16) {
auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance(); auto ocl_runtime = lite::opencl::OpenCLRuntime::GetInstance();
ocl_runtime->Init(); ocl_runtime->Init();
if (fp16) {
ocl_runtime->SetFp16Enable(true);
}
auto allocator = ocl_runtime->GetAllocator(); auto allocator = ocl_runtime->GetAllocator();
size_t input_size; size_t input_size;
int ci = 1280; int ci = shape[0];
int co = 1001; int co = shape[1];
std::string input_path = "./test_data/matmul/matmul_fp32_input.bin"; std::string input_path = file_path[0];
auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); auto input_data = mindspore::lite::ReadFile(input_path.c_str(), &input_size);
if (input_data == nullptr) { if (input_data == nullptr) {
MS_LOG(ERROR) << "input_data load error."; MS_LOG(ERROR) << "input_data load error.";
return; return;
} }
size_t weight_size; size_t weight_size;
std::string weight_path = "./test_data/matmul/matmul_fp32_weight.bin"; std::string weight_path = file_path[1];
auto weight_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(weight_path.c_str(), &weight_size)); auto weight_data = mindspore::lite::ReadFile(weight_path.c_str(), &weight_size);
if (weight_data == nullptr) { if (weight_data == nullptr) {
MS_LOG(ERROR) << "weight_data load error."; MS_LOG(ERROR) << "weight_data load error.";
return; return;
} }
std::vector<int> input_shape = {1, ci}; std::vector<int> input_shape = {1, ci};
auto tensor_x_ptr = auto tensor_x_ptr = std::make_unique<lite::tensor::Tensor>(TypeId(fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
std::make_unique<lite::tensor::Tensor>(TypeId(kNumberTypeFloat32), input_shape, schema::Format_NC); input_shape, schema::Format_NC);
auto tensor_x = tensor_x_ptr.get(); auto tensor_x = tensor_x_ptr.get();
if (tensor_x == nullptr) { if (tensor_x == nullptr) {
MS_LOG(ERROR) << "tensor_x create error."; MS_LOG(ERROR) << "tensor_x create error.";
...@@ -58,7 +62,8 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) { ...@@ -58,7 +62,8 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) {
} }
std::vector<int> w_shape = {co, ci}; std::vector<int> w_shape = {co, ci};
auto tensor_w_ptr = std::make_unique<lite::tensor::Tensor>(TypeId(kNumberTypeFloat32), w_shape); auto tensor_w_ptr =
std::make_unique<lite::tensor::Tensor>(TypeId(fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32), w_shape);
auto tensor_w = tensor_w_ptr.get(); auto tensor_w = tensor_w_ptr.get();
if (tensor_w == nullptr) { if (tensor_w == nullptr) {
MS_LOG(ERROR) << "tensor_w create error."; MS_LOG(ERROR) << "tensor_w create error.";
...@@ -67,8 +72,8 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) { ...@@ -67,8 +72,8 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) {
tensor_w->SetData(weight_data); tensor_w->SetData(weight_data);
std::vector<int> out_shape = {1, co}; std::vector<int> out_shape = {1, co};
auto tensor_out_ptr = auto tensor_out_ptr = std::make_unique<lite::tensor::Tensor>(TypeId(fp16 ? kNumberTypeFloat16 : kNumberTypeFloat32),
std::make_unique<lite::tensor::Tensor>(TypeId(kNumberTypeFloat32), out_shape, schema::Format_NC); out_shape, schema::Format_NC);
auto tensor_out = tensor_out_ptr.get(); auto tensor_out = tensor_out_ptr.get();
if (tensor_out == nullptr) { if (tensor_out == nullptr) {
MS_LOG(ERROR) << "tensor_out create error."; MS_LOG(ERROR) << "tensor_out create error.";
...@@ -76,16 +81,16 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) { ...@@ -76,16 +81,16 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) {
} }
std::vector<lite::tensor::Tensor *> inputs{tensor_x, tensor_w}; std::vector<lite::tensor::Tensor *> inputs{tensor_x, tensor_w};
std::vector<lite::tensor::Tensor *> outputs{tensor_out}; std::vector<lite::tensor::Tensor *> outputs{tensor_out};
auto arith_kernel_ptr = std::make_unique<kernel::MatMulOpenCLKernel>(nullptr, inputs, outputs, false); auto op_kernel_ptr = std::make_unique<kernel::MatMulOpenCLKernel>(nullptr, inputs, outputs, false);
auto arith_kernel = arith_kernel_ptr.get(); auto op_kernel = op_kernel_ptr.get();
if (arith_kernel == nullptr) { if (op_kernel == nullptr) {
MS_LOG(ERROR) << "arith_kernel create error."; MS_LOG(ERROR) << "op_kernel create error.";
return; return;
} }
arith_kernel->Init(); op_kernel->Init();
inputs[0]->MallocData(allocator); inputs[0]->MallocData(allocator);
std::vector<kernel::LiteKernel *> kernels{arith_kernel}; std::vector<kernel::LiteKernel *> kernels{op_kernel};
std::vector<lite::tensor::Tensor *> inputs_g{tensor_x}; std::vector<lite::tensor::Tensor *> inputs_g{tensor_x};
auto pGraph_ptr = std::make_unique<kernel::SubGraphOpenCLKernel>(inputs_g, outputs, kernels, kernels, kernels); auto pGraph_ptr = std::make_unique<kernel::SubGraphOpenCLKernel>(inputs_g, outputs, kernels, kernels, kernels);
...@@ -97,24 +102,34 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) { ...@@ -97,24 +102,34 @@ TEST_F(TestMatMulOpenCL, MatMulFp32) {
pGraph->Init(); pGraph->Init();
memcpy(inputs[0]->Data(), input_data, input_size); memcpy(inputs[0]->Data(), input_data, input_size);
pGraph->Run(); pGraph->Run();
if (fp16) {
size_t output_size; CompareOutput(tensor_out, file_path[2], static_cast<float16_t>(1e-3), 2e-2);
std::string output_path = "./test_data/matmul/matmul_fp32_output.bin"; } else {
auto correct_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(output_path.c_str(), &output_size)); CompareOutput(tensor_out, file_path[2], static_cast<float>(1e-5));
printf("==================output data=================\n");
float *output_data = reinterpret_cast<float *>(tensor_out->Data());
std::cout << std::endl;
int size_n = co;
size_n = size_n > 100 ? 100 : size_n;
for (int i = 0; i < size_n; i++) {
std::cout << output_data[i] << " ";
} }
std::cout << std::endl;
// compare
CompareOutputData(output_data, correct_data, co, 0.0001);
tensor_x->SetData(nullptr); tensor_x->SetData(nullptr);
tensor_out->SetData(nullptr); tensor_out->SetData(nullptr);
MS_LOG(INFO) << "TestMatMulFp32 passed"; MS_LOG(INFO) << "TestMatMulFp32 passed";
} }
TEST_F(TestMatMulOpenCL, MatMulFp32) {
int ci = 1280;
int co = 1001;
std::vector<int> shape = {ci, co};
std::vector<std::string> file_path = {"./test_data/matmul/matmul_fp32_input.bin",
"./test_data/matmul/matmul_fp32_weight.bin",
"./test_data/matmul/matmul_fp32_output.bin"};
RunTestCaseMatMul(shape, file_path, false);
}
TEST_F(TestMatMulOpenCL, MatMulFp16) {
int ci = 1280;
int co = 1001;
std::vector<int> shape = {ci, co};
std::vector<std::string> file_path = {"./test_data/matmul/matmul_fp16_input.bin",
"./test_data/matmul/matmul_fp16_weight.bin",
"./test_data/matmul/matmul_fp16_output.bin"};
RunTestCaseMatMul(shape, file_path, true);
}
} // namespace mindspore } // namespace mindspore
...@@ -109,7 +109,7 @@ TEST_F(TestMaxPoolingOpenCL, MaxPool_1_32_512_96) { ...@@ -109,7 +109,7 @@ TEST_F(TestMaxPoolingOpenCL, MaxPool_1_32_512_96) {
MS_LOG(INFO) << "compare result"; MS_LOG(INFO) << "compare result";
std::cout << "compare result" << std::endl; std::cout << "compare result" << std::endl;
CompareOutput(output_tensor, expect_file); CompareOutput(output_tensor, expect_file, static_cast<float>(1e-5));
for (auto tensor : inputs) { for (auto tensor : inputs) {
delete tensor; delete tensor;
} }
......
...@@ -83,7 +83,7 @@ void RunTestCase(std::vector<int> input_shape, std::vector<int> output_shape, st ...@@ -83,7 +83,7 @@ void RunTestCase(std::vector<int> input_shape, std::vector<int> output_shape, st
pGraph->Run(); pGraph->Run();
MS_LOG(INFO) << "compare result"; MS_LOG(INFO) << "compare result";
CompareOutput(output_tensor, expect_file); CompareOutput(output_tensor, expect_file, static_cast<float>(1e-5));
for (auto tensor : inputs) { for (auto tensor : inputs) {
delete tensor; delete tensor;
} }
......
...@@ -35,34 +35,4 @@ void LoadTestData(void *dst, size_t dst_size, const std::string &file_path) { ...@@ -35,34 +35,4 @@ void LoadTestData(void *dst, size_t dst_size, const std::string &file_path) {
} }
} }
void CompareOutput(lite::tensor::Tensor *output_tensor, const std::string &file_path) {
float *output_data = reinterpret_cast<float *>(output_tensor->Data());
size_t output_size = output_tensor->Size();
float *expect_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(file_path.c_str(), &output_size));
printf("output[0:12]:");
for (int i = 0; i < 12; i++) {
printf("[%d]:%.3f ", i, output_data[i]);
}
printf("\n");
printf("expect[0:12]:");
for (int i = 0; i < 12; i++) {
printf("[%d]:%.3f ", i, expect_data[i]);
}
printf("\n");
constexpr float atol = 1e-5;
for (int i = 0; i < output_tensor->ElementsNum(); ++i) {
if (std::fabs(output_data[i] - expect_data[i]) > atol) {
printf("error at idx[%d] expect=%.3f output=%.3f \n", i, expect_data[i], output_data[i]);
printf("error at idx[%d] expect=%.3f output=%.3f \n", i, expect_data[i], output_data[i]);
printf("error at idx[%d] expect=%.3f output=%.3f \n", i, expect_data[i], output_data[i]);
return;
}
}
printf("compare success!\n");
printf("compare success!\n");
printf("compare success!\n\n\n");
}
} // namespace mindspore } // namespace mindspore
...@@ -29,7 +29,30 @@ namespace mindspore { ...@@ -29,7 +29,30 @@ namespace mindspore {
void LoadTestData(void *dst, size_t dst_size, const std::string &file_path); void LoadTestData(void *dst, size_t dst_size, const std::string &file_path);
void CompareOutput(lite::tensor::Tensor *output_tensor, const std::string &file_path); template <typename T>
void CompareOutput(lite::tensor::Tensor *output_tensor, const std::string &file_path, T atol, float rtol = 1e-5) {
T *output_data = reinterpret_cast<T *>(output_tensor->Data());
size_t output_size = output_tensor->Size();
T *expect_data = reinterpret_cast<T *>(mindspore::lite::ReadFile(file_path.c_str(), &output_size));
printf("output[0:12]:");
for (int i = 0; i < 12; i++) {
printf("[%d]:%.3f ", i, output_data[i]);
}
printf("\n");
printf("expect[0:12]:");
for (int i = 0; i < 12; i++) {
printf("[%d]:%.3f ", i, expect_data[i]);
}
printf("\n");
for (int i = 0; i < output_tensor->ElementsNum(); ++i) {
if (std::fabs(output_data[i] - expect_data[i]) > atol + rtol * std::fabs(expect_data[i])) {
printf("error at idx[%d] expect=%.3f output=%.3f \n", i, expect_data[i], output_data[i]);
return;
}
}
printf("compare success!\n");
}
} // namespace mindspore } // namespace mindspore
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册