提交 4cff81ee 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!1733 change some settings in SSD

Merge pull request !1733 from zhaoting/SSD_t
......@@ -7,6 +7,7 @@
* DeepFM: a factorization-machine based neural network for CTR prediction on Criteo dataset.
* DeepLabV3: significantly improves over our previous DeepLab versions without DenseCRF post-processing and attains comparable performance with other state-of-art models on the PASCAL VOC 2007 semantic image segmentation benchmark.
* Faster-RCNN: towards real-time object detection with region proposal networks on COCO 2017 dataset.
* SSD: a single stage object detection methods on COCO 2017 dataset.
* GoogLeNet: a deep convolutional neural network architecture codenamed Inception V1 for classification and detection on CIFAR-10 dataset.
* Wide&Deep: jointly trained wide linear models and deep neural networks for recommender systems on Criteo dataset.
* Frontend and User Interface
......
......@@ -60,10 +60,10 @@ To train the model, run `train.py`. If the `MINDRECORD_DIR` is empty, it will ge
- Distribute mode
```
sh run_distribute_train.sh 8 150 coco /data/hccl.json
sh run_distribute_train.sh 8 500 0.2 coco /data/hccl.json
```
The input parameters are device numbers, epoch size, dataset mode and [hccl json configuration file](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html). **It is better to use absolute path.**
The input parameters are device numbers, epoch size, learning rate, dataset mode and [hccl json configuration file](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html). **It is better to use absolute path.**
You will get the loss value of each step as following:
......@@ -75,14 +75,15 @@ epoch: 3 step: 455, loss is 5.458992
epoch: 148 step: 455, loss is 1.8340507
epoch: 149 step: 455, loss is 2.0876894
epoch: 150 step: 455, loss is 2.239692
...
```
### Evaluation
for evaluation , run `eval.py` with `ckpt_path`. `ckpt_path` is the path of [checkpoint](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html) file.
for evaluation , run `eval.py` with `checkpoint_path`. `checkpoint_path` is the path of [checkpoint](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html) file.
```
python eval.py --ckpt_path ssd.ckpt --dataset coco
python eval.py --checkpoint_path ssd.ckpt --dataset coco
```
You can run ```python eval.py -h``` to get more information.
......@@ -27,6 +27,9 @@ class ConfigSSD:
NUM_SSD_BOXES = 1917
NEG_PRE_POSITIVE = 3
MATCH_THRESHOLD = 0.5
NMS_THRESHOLD = 0.6
MIN_SCORE = 0.05
TOP_K = 100
NUM_DEFAULT = [3, 6, 6, 6, 6, 6]
EXTRAS_IN_CHANNELS = [256, 576, 1280, 512, 256, 256]
......@@ -34,20 +37,21 @@ class ConfigSSD:
EXTRAS_STRIDES = [1, 1, 2, 2, 2, 2]
EXTRAS_RATIO = [0.2, 0.2, 0.2, 0.25, 0.5, 0.25]
FEATURE_SIZE = [19, 10, 5, 3, 2, 1]
SCALES = [21, 45, 99, 153, 207, 261, 315]
ASPECT_RATIOS = [(1,), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3)]
MIN_SCALE = 0.2
MAX_SCALE = 0.95
ASPECT_RATIOS = [(2,), (2, 3), (2, 3), (2, 3), (2, 3), (2, 3)]
STEPS = (16, 32, 64, 100, 150, 300)
PRIOR_SCALING = (0.1, 0.2)
# `MINDRECORD_DIR` and `COCO_ROOT` are better to use absolute path.
MINDRECORD_DIR = "MindRecord_COCO"
COCO_ROOT = "coco2017"
MINDRECORD_DIR = "/data/MindRecord_COCO"
COCO_ROOT = "/data/coco2017"
TRAIN_DATA_TYPE = "train2017"
VAL_DATA_TYPE = "val2017"
INSTANCES_SET = "annotations/instances_{}.json"
COCO_CLASSES = ('background', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus',
'train', 'truck', 'boat', 'traffic light', 'fire', 'hydrant',
'train', 'truck', 'boat', 'traffic light', 'fire hydrant',
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog',
'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra',
'giraffe', 'backpack', 'umbrella', 'handbag', 'tie',
......@@ -58,7 +62,7 @@ class ConfigSSD:
'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza',
'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed',
'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote',
'keyboard', 'cell phone', 'microwave oven', 'toaster', 'sink',
'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink',
'refrigerator', 'book', 'clock', 'vase', 'scissors',
'teddy bear', 'hair drier', 'toothbrush')
NUM_CLASSES = len(COCO_CLASSES)
......@@ -32,36 +32,38 @@ config = ConfigSSD()
class GeneratDefaultBoxes():
"""
Generate Default boxes for SSD, follows the order of (W, H, archor_sizes).
`self.default_boxes` has a shape of [archor_sizes, H, W, 4], the last dimension is [x, y, w, h].
`self.default_boxes_ltrb` has a shape as `self.default_boxes`, the last dimension is [x1, y1, x2, y2].
`self.default_boxes` has a shape of [archor_sizes, H, W, 4], the last dimension is [y, x, h, w].
`self.default_boxes_ltrb` has a shape as `self.default_boxes`, the last dimension is [y1, x1, y2, x2].
"""
def __init__(self):
fk = config.IMG_SHAPE[0] / np.array(config.STEPS)
scale_rate = (config.MAX_SCALE - config.MIN_SCALE) / (len(config.NUM_DEFAULT) - 1)
scales = [config.MIN_SCALE + scale_rate * i for i in range(len(config.NUM_DEFAULT))] + [1.0]
self.default_boxes = []
for idex, feature_size in enumerate(config.FEATURE_SIZE):
sk1 = config.SCALES[idex] / config.IMG_SHAPE[0]
sk2 = config.SCALES[idex + 1] / config.IMG_SHAPE[0]
sk1 = scales[idex]
sk2 = scales[idex + 1]
sk3 = math.sqrt(sk1 * sk2)
if config.NUM_DEFAULT[idex] == 3:
all_sizes = [(0.5, 1.0), (1.0, 1.0), (1.0, 0.5)]
if idex == 0:
w, h = sk1 * math.sqrt(2), sk1 / math.sqrt(2)
all_sizes = [(0.1, 0.1), (w, h), (h, w)]
else:
all_sizes = [(sk1, sk1), (sk3, sk3)]
all_sizes = [(sk1, sk1)]
for aspect_ratio in config.ASPECT_RATIOS[idex]:
w, h = sk1 * math.sqrt(aspect_ratio), sk1 / math.sqrt(aspect_ratio)
all_sizes.append((w, h))
all_sizes.append((h, w))
all_sizes.append((sk3, sk3))
assert len(all_sizes) == config.NUM_DEFAULT[idex]
for i, j in it.product(range(feature_size), repeat=2):
for w, h in all_sizes:
cx, cy = (j + 0.5) / fk[idex], (i + 0.5) / fk[idex]
box = [np.clip(k, 0, 1) for k in (cx, cy, w, h)]
self.default_boxes.append(box)
self.default_boxes.append([cy, cx, h, w])
def to_ltrb(cx, cy, w, h):
return cx - w / 2, cy - h / 2, cx + w / 2, cy + h / 2
def to_ltrb(cy, cx, h, w):
return cy - h / 2, cx - w / 2, cy + h / 2, cx + w / 2
# For IoU calculation
self.default_boxes_ltrb = np.array(tuple(to_ltrb(*i) for i in self.default_boxes), dtype='float32')
......@@ -70,17 +72,22 @@ class GeneratDefaultBoxes():
default_boxes_ltrb = GeneratDefaultBoxes().default_boxes_ltrb
default_boxes = GeneratDefaultBoxes().default_boxes
x1, y1, x2, y2 = np.split(default_boxes_ltrb[:, :4], 4, axis=-1)
y1, x1, y2, x2 = np.split(default_boxes_ltrb[:, :4], 4, axis=-1)
vol_anchors = (x2 - x1) * (y2 - y1)
matching_threshold = config.MATCH_THRESHOLD
def _rand(a=0., b=1.):
"""Generate random."""
return np.random.rand() * (b - a) + a
def ssd_bboxes_encode(boxes):
"""
Labels anchors with ground truth inputs.
Args:
boxex: ground truth with shape [N, 5], for each row, it stores [x, y, w, h, cls].
boxex: ground truth with shape [N, 5], for each row, it stores [y, x, h, w, cls].
Returns:
gt_loc: location ground truth with shape [num_anchors, 4].
......@@ -91,10 +98,10 @@ def ssd_bboxes_encode(boxes):
def jaccard_with_anchors(bbox):
"""Compute jaccard score a box and the anchors."""
# Intersection bbox and volume.
xmin = np.maximum(x1, bbox[0])
ymin = np.maximum(y1, bbox[1])
xmax = np.minimum(x2, bbox[2])
ymax = np.minimum(y2, bbox[3])
ymin = np.maximum(y1, bbox[0])
xmin = np.maximum(x1, bbox[1])
ymax = np.minimum(y2, bbox[2])
xmax = np.minimum(x2, bbox[3])
w = np.maximum(xmax - xmin, 0.)
h = np.maximum(ymax - ymin, 0.)
......@@ -110,12 +117,11 @@ def ssd_bboxes_encode(boxes):
for bbox in boxes:
label = int(bbox[4])
scores = jaccard_with_anchors(bbox)
idx = np.argmax(scores)
scores[idx] = 2.0
mask = (scores > matching_threshold)
if not np.any(mask):
mask[np.argmax(scores)] = True
mask = mask & (scores > pre_scores)
pre_scores = np.maximum(pre_scores, scores)
pre_scores = np.maximum(pre_scores, scores * mask)
t_label = mask * label + (1 - mask) * t_label
for i in range(4):
t_boxes[:, i] = mask * bbox[i] + (1 - mask) * t_boxes[:, i]
......@@ -134,13 +140,13 @@ def ssd_bboxes_encode(boxes):
bboxes_t[:, 2:4] = np.log(bboxes_t[:, 2:4] / default_boxes_t[:, 2:4]) / config.PRIOR_SCALING[1]
bboxes[index] = bboxes_t
num_match_num = np.array([len(np.nonzero(t_label)[0])], dtype=np.int32)
return bboxes, t_label.astype(np.int32), num_match_num
num_match = np.array([len(np.nonzero(t_label)[0])], dtype=np.int32)
return bboxes, t_label.astype(np.int32), num_match
def ssd_bboxes_decode(boxes, index):
"""Decode predict boxes to [x, y, w, h]"""
boxes_t = boxes[index]
default_boxes_t = default_boxes[index]
def ssd_bboxes_decode(boxes):
"""Decode predict boxes to [y, x, h, w]"""
boxes_t = boxes.copy()
default_boxes_t = default_boxes.copy()
boxes_t[:, :2] = boxes_t[:, :2] * config.PRIOR_SCALING[0] * default_boxes_t[:, 2:] + default_boxes_t[:, :2]
boxes_t[:, 2:4] = np.exp(boxes_t[:, 2:4] * config.PRIOR_SCALING[1]) * default_boxes_t[:, 2:4]
......@@ -149,41 +155,101 @@ def ssd_bboxes_decode(boxes, index):
bboxes[:, [0, 1]] = boxes_t[:, [0, 1]] - boxes_t[:, [2, 3]] / 2
bboxes[:, [2, 3]] = boxes_t[:, [0, 1]] + boxes_t[:, [2, 3]] / 2
return bboxes
return np.clip(bboxes, 0, 1)
def preprocess_fn(image, box, is_training):
"""Preprocess function for dataset."""
def _rand(a=0., b=1.):
"""Generate random."""
return np.random.rand() * (b - a) + a
def intersect(box_a, box_b):
"""Compute the intersect of two sets of boxes."""
max_yx = np.minimum(box_a[:, 2:4], box_b[2:4])
min_yx = np.maximum(box_a[:, :2], box_b[:2])
inter = np.clip((max_yx - min_yx), a_min=0, a_max=np.inf)
return inter[:, 0] * inter[:, 1]
def _infer_data(image, input_shape, box):
img_h, img_w, _ = image.shape
input_h, input_w = input_shape
scale = min(float(input_w) / float(img_w), float(input_h) / float(img_h))
nw = int(img_w * scale)
nh = int(img_h * scale)
def jaccard_numpy(box_a, box_b):
"""Compute the jaccard overlap of two sets of boxes."""
inter = intersect(box_a, box_b)
area_a = ((box_a[:, 2] - box_a[:, 0]) *
(box_a[:, 3] - box_a[:, 1]))
area_b = ((box_b[2] - box_b[0]) *
(box_b[3] - box_b[1]))
union = area_a + area_b - inter
return inter / union
def random_sample_crop(image, boxes):
"""Random Crop the image and boxes"""
height, width, _ = image.shape
min_iou = np.random.choice([None, 0.1, 0.3, 0.5, 0.7, 0.9])
if min_iou is None:
return image, boxes
# max trails (50)
for _ in range(50):
image_t = image
w = _rand(0.3, 1.0) * width
h = _rand(0.3, 1.0) * height
# aspect ratio constraint b/t .5 & 2
if h / w < 0.5 or h / w > 2:
continue
left = _rand() * (width - w)
top = _rand() * (height - h)
rect = np.array([int(top), int(left), int(top+h), int(left+w)])
overlap = jaccard_numpy(boxes, rect)
# dropout some boxes
drop_mask = overlap > 0
if not drop_mask.any():
continue
if overlap[drop_mask].min() < min_iou:
continue
image_t = image_t[rect[0]:rect[2], rect[1]:rect[3], :]
centers = (boxes[:, :2] + boxes[:, 2:4]) / 2.0
m1 = (rect[0] < centers[:, 0]) * (rect[1] < centers[:, 1])
m2 = (rect[2] > centers[:, 0]) * (rect[3] > centers[:, 1])
# mask in that both m1 and m2 are true
mask = m1 * m2 * drop_mask
image = cv2.resize(image, (nw, nh))
# have any valid boxes? try again if not
if not mask.any():
continue
new_image = np.zeros((input_h, input_w, 3), np.float32)
dh = (input_h - nh) // 2
dw = (input_w - nw) // 2
new_image[dh: (nh + dh), dw: (nw + dw), :] = image
image = new_image
# take only matching gt boxes
boxes_t = boxes[mask, :].copy()
boxes_t[:, :2] = np.maximum(boxes_t[:, :2], rect[:2])
boxes_t[:, :2] -= rect[:2]
boxes_t[:, 2:4] = np.minimum(boxes_t[:, 2:4], rect[2:4])
boxes_t[:, 2:4] -= rect[:2]
return image_t, boxes_t
return image, boxes
def preprocess_fn(img_id, image, box, is_training):
"""Preprocess function for dataset."""
def _infer_data(image, input_shape):
img_h, img_w, _ = image.shape
input_h, input_w = input_shape
image = cv2.resize(image, (input_w, input_h))
#When the channels of image is 1
if len(image.shape) == 2:
image = np.expand_dims(image, axis=-1)
image = np.concatenate([image, image, image], axis=-1)
box = box.astype(np.float32)
box[:, [0, 2]] = (box[:, [0, 2]] * scale + dw) / input_w
box[:, [1, 3]] = (box[:, [1, 3]] * scale + dh) / input_h
return image, np.array((img_h, img_w), np.float32), box
return img_id, image, np.array((img_h, img_w), np.float32)
def _data_aug(image, box, is_training, image_size=(300, 300)):
"""Data augmentation function."""
......@@ -191,53 +257,34 @@ def preprocess_fn(image, box, is_training):
w, h = image_size
if not is_training:
return _infer_data(image, image_size, box)
# Random settings
scale_w = _rand(0.75, 1.25)
scale_h = _rand(0.75, 1.25)
return _infer_data(image, image_size)
flip = _rand() < .5
nw = iw * scale_w
nh = ih * scale_h
scale = min(w / nw, h / nh)
nw = int(scale * nw)
nh = int(scale * nh)
# Random crop
box = box.astype(np.float32)
image, box = random_sample_crop(image, box)
ih, iw, _ = image.shape
# Resize image
image = cv2.resize(image, (nw, nh))
# place image
new_image = np.zeros((h, w, 3), dtype=np.float32)
dw = (w - nw) // 2
dh = (h - nh) // 2
new_image[dh:dh + nh, dw:dw + nw, :] = image
image = new_image
image = cv2.resize(image, (w, h))
# Flip image or not
flip = _rand() < .5
if flip:
image = cv2.flip(image, 1, dst=None)
# Convert image to gray or not
gray = _rand() < .25
if gray:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# When the channels of image is 1
if len(image.shape) == 2:
image = np.expand_dims(image, axis=-1)
image = np.concatenate([image, image, image], axis=-1)
box = box.astype(np.float32)
# Transform box with shape[x1, y1, x2, y2].
box[:, [0, 2]] = (box[:, [0, 2]] * scale * scale_w + dw) / w
box[:, [1, 3]] = (box[:, [1, 3]] * scale * scale_h + dh) / h
box[:, [0, 2]] = box[:, [0, 2]] / ih
box[:, [1, 3]] = box[:, [1, 3]] / iw
if flip:
box[:, [0, 2]] = 1 - box[:, [2, 0]]
box[:, [1, 3]] = 1 - box[:, [3, 1]]
box, label, num_match_num = ssd_bboxes_encode(box)
return image, box, label, num_match_num
box, label, num_match = ssd_bboxes_encode(box)
return image, box, label, num_match
return _data_aug(image, box, is_training, image_size=config.IMG_SHAPE)
......@@ -265,7 +312,8 @@ def create_coco_label(is_training):
classs_dict[cat["id"]] = cat["name"]
image_ids = coco.getImgIds()
image_files = []
images = []
image_path_dict = {}
image_anno_dict = {}
for img_id in image_ids:
......@@ -275,17 +323,23 @@ def create_coco_label(is_training):
anno = coco.loadAnns(anno_ids)
image_path = os.path.join(coco_root, data_type, file_name)
annos = []
iscrowd = False
for label in anno:
bbox = label["bbox"]
class_name = classs_dict[label["category_id"]]
iscrowd = iscrowd or label["iscrowd"]
if class_name in train_cls:
x_min, x_max = bbox[0], bbox[0] + bbox[2]
y_min, y_max = bbox[1], bbox[1] + bbox[3]
annos.append(list(map(round, [x_min, y_min, x_max, y_max])) + [train_cls_dict[class_name]])
annos.append(list(map(round, [y_min, x_min, y_max, x_max])) + [train_cls_dict[class_name]])
if not is_training and iscrowd:
continue
if len(annos) >= 1:
image_files.append(image_path)
image_anno_dict[image_path] = np.array(annos)
return image_files, image_anno_dict
images.append(img_id)
image_path_dict[img_id] = image_path
image_anno_dict[img_id] = np.array(annos)
return images, image_path_dict, image_anno_dict
def anno_parser(annos_str):
......@@ -299,7 +353,8 @@ def anno_parser(annos_str):
def filter_valid_data(image_dir, anno_path):
"""Filter valid image file, which both in image_dir and anno_path."""
image_files = []
images = []
image_path_dict = {}
image_anno_dict = {}
if not os.path.isdir(image_dir):
raise RuntimeError("Path given is not valid.")
......@@ -308,15 +363,17 @@ def filter_valid_data(image_dir, anno_path):
with open(anno_path, "rb") as f:
lines = f.readlines()
for line in lines:
for img_id, line in enumerate(lines):
line_str = line.decode("utf-8").strip()
line_split = str(line_str).split(' ')
file_name = line_split[0]
image_path = os.path.join(image_dir, file_name)
if os.path.isfile(image_path):
image_anno_dict[image_path] = anno_parser(line_split[1:])
image_files.append(image_path)
return image_files, image_anno_dict
images.append(img_id)
image_path_dict[img_id] = image_path
image_anno_dict[img_id] = anno_parser(line_split[1:])
return images, image_path_dict, image_anno_dict
def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="ssd.mindrecord", file_num=8):
......@@ -325,21 +382,24 @@ def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="ssd.
mindrecord_path = os.path.join(mindrecord_dir, prefix)
writer = FileWriter(mindrecord_path, file_num)
if dataset == "coco":
image_files, image_anno_dict = create_coco_label(is_training)
images, image_path_dict, image_anno_dict = create_coco_label(is_training)
else:
image_files, image_anno_dict = filter_valid_data(config.IMAGE_DIR, config.ANNO_PATH)
images, image_path_dict, image_anno_dict = filter_valid_data(config.IMAGE_DIR, config.ANNO_PATH)
ssd_json = {
"img_id": {"type": "int32", "shape": [1]},
"image": {"type": "bytes"},
"annotation": {"type": "int32", "shape": [-1, 5]},
}
writer.add_schema(ssd_json, "ssd_json")
for image_name in image_files:
with open(image_name, 'rb') as f:
for img_id in images:
image_path = image_path_dict[img_id]
with open(image_path, 'rb') as f:
img = f.read()
annos = np.array(image_anno_dict[image_name], dtype=np.int32)
row = {"image": img, "annotation": annos}
annos = np.array(image_anno_dict[img_id], dtype=np.int32)
img_id = np.array([img_id], dtype=np.int32)
row = {"img_id": img_id, "image": img, "annotation": annos}
writer.write_raw_data([row])
writer.commit()
......@@ -347,29 +407,26 @@ def data_to_mindrecord_byte_image(dataset="coco", is_training=True, prefix="ssd.
def create_ssd_dataset(mindrecord_file, batch_size=32, repeat_num=10, device_num=1, rank=0,
is_training=True, num_parallel_workers=4):
"""Creatr SSD dataset with MindDataset."""
ds = de.MindDataset(mindrecord_file, columns_list=["image", "annotation"], num_shards=device_num, shard_id=rank,
num_parallel_workers=num_parallel_workers, shuffle=is_training)
ds = de.MindDataset(mindrecord_file, columns_list=["img_id", "image", "annotation"], num_shards=device_num,
shard_id=rank, num_parallel_workers=num_parallel_workers, shuffle=is_training)
decode = C.Decode()
ds = ds.map(input_columns=["image"], operations=decode)
compose_map_func = (lambda image, annotation: preprocess_fn(image, annotation, is_training))
change_swap_op = C.HWC2CHW()
normalize_op = C.Normalize(mean=[0.485*255, 0.456*255, 0.406*255], std=[0.229*255, 0.224*255, 0.225*255])
color_adjust_op = C.RandomColorAdjust(brightness=0.4, contrast=0.4, saturation=0.4)
compose_map_func = (lambda img_id, image, annotation: preprocess_fn(img_id, image, annotation, is_training))
if is_training:
hwc_to_chw = C.HWC2CHW()
ds = ds.map(input_columns=["image", "annotation"],
output_columns=["image", "box", "label", "num_match_num"],
columns_order=["image", "box", "label", "num_match_num"],
operations=compose_map_func, python_multiprocessing=True, num_parallel_workers=num_parallel_workers)
ds = ds.map(input_columns=["image"], operations=hwc_to_chw, python_multiprocessing=True,
num_parallel_workers=num_parallel_workers)
ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(repeat_num)
output_columns = ["image", "box", "label", "num_match"]
trans = [color_adjust_op, normalize_op, change_swap_op]
else:
hwc_to_chw = C.HWC2CHW()
ds = ds.map(input_columns=["image", "annotation"],
output_columns=["image", "image_shape", "annotation"],
columns_order=["image", "image_shape", "annotation"],
operations=compose_map_func)
ds = ds.map(input_columns=["image"], operations=hwc_to_chw, num_parallel_workers=num_parallel_workers)
output_columns = ["img_id", "image", "image_shape"]
trans = [normalize_op, change_swap_op]
ds = ds.map(input_columns=["img_id", "image", "annotation"],
output_columns=output_columns, columns_order=output_columns,
operations=compose_map_func, python_multiprocessing=is_training,
num_parallel_workers=num_parallel_workers)
ds = ds.map(input_columns=["image"], operations=trans, python_multiprocessing=is_training,
num_parallel_workers=num_parallel_workers)
ds = ds.batch(batch_size, drop_remainder=True)
ds = ds.repeat(repeat_num)
return ds
......@@ -17,6 +17,7 @@
import os
import argparse
import time
import numpy as np
from mindspore import context, Tensor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.model_zoo.ssd import SSD300, ssd_mobilenet_v2
......@@ -26,8 +27,8 @@ from util import metrics
def ssd_eval(dataset_path, ckpt_path):
"""SSD evaluation."""
ds = create_ssd_dataset(dataset_path, batch_size=1, repeat_num=1, is_training=False)
batch_size = 32
ds = create_ssd_dataset(dataset_path, batch_size=batch_size, repeat_num=1, is_training=False)
net = SSD300(ssd_mobilenet_v2(), ConfigSSD(), is_training=False)
print("Load Checkpoint!")
param_dict = load_checkpoint(ckpt_path)
......@@ -35,28 +36,28 @@ def ssd_eval(dataset_path, ckpt_path):
load_param_into_net(net, param_dict)
net.set_train(False)
i = 1.
total = ds.get_dataset_size()
i = batch_size
total = ds.get_dataset_size() * batch_size
start = time.time()
pred_data = []
print("\n========================================\n")
print("total images num: ", total)
print("Processing, please wait a moment.")
for data in ds.create_dict_iterator():
img_id = data['img_id']
img_np = data['image']
image_shape = data['image_shape']
annotation = data['annotation']
output = net(Tensor(img_np))
for batch_idx in range(img_np.shape[0]):
pred_data.append({"boxes": output[0].asnumpy()[batch_idx],
"box_scores": output[1].asnumpy()[batch_idx],
"annotation": annotation,
"image_shape": image_shape})
percent = round(i / total * 100, 2)
"img_id": int(np.squeeze(img_id[batch_idx])),
"image_shape": image_shape[batch_idx]})
percent = round(i / total * 100., 2)
print(f' {str(percent)} [{i}/{total}]', end='\r')
i += 1
i += batch_size
cost_time = int((time.time() - start) * 1000)
print(f' 100% [{total}/{total}] cost {cost_time} ms')
mAP = metrics(pred_data)
......
......@@ -16,11 +16,17 @@
echo "=============================================================================================================="
echo "Please run the scipt as: "
echo "sh run_distribute_train.sh DEVICE_NUM EPOCH_SIZE MINDSPORE_HCCL_CONFIG_PATH"
echo "for example: sh run_distribute_train.sh 8 150 coco /data/hccl.json"
echo "sh run_distribute_train.sh DEVICE_NUM EPOCH_SIZE LR DATASET MINDSPORE_HCCL_CONFIG_PATH PRE_TRAINED PRE_TRAINED_EPOCH_SIZE"
echo "for example: sh run_distribute_train.sh 8 500 0.2 coco /data/hccl.json /opt/ssd-300.ckpt(optional) 200(optional)"
echo "It is better to use absolute path."
echo "The learning rate is 0.4 as default, if you want other lr, please change the value in this script."
echo "=============================================================================================================="
echo "================================================================================================================="
if [ $# != 5 ] && [ $# != 7 ]
then
echo "Usage: sh run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [LR] [DATASET] \
[MINDSPORE_HCCL_CONFIG_PATH] [PRE_TRAINED](optional) [PRE_TRAINED_EPOCH_SIZE](optional)"
exit 1
fi
# Before start distribute train, first create mindrecord files.
python train.py --only_create_dataset=1
......@@ -29,9 +35,11 @@ echo "After running the scipt, the network runs in the background. The log will
export RANK_SIZE=$1
EPOCH_SIZE=$2
DATASET=$3
export MINDSPORE_HCCL_CONFIG_PATH=$4
LR=$3
DATASET=$4
PRE_TRAINED=$6
PRE_TRAINED_EPOCH_SIZE=$7
export MINDSPORE_HCCL_CONFIG_PATH=$5
for((i=0;i<RANK_SIZE;i++))
do
......@@ -43,12 +51,29 @@ do
export RANK_ID=$i
echo "start training for rank $i, device $DEVICE_ID"
env > env.log
if [ $# == 5 ]
then
python ../train.py \
--distribute=1 \
--lr=0.4 \
--lr=$LR \
--dataset=$DATASET \
--device_num=$RANK_SIZE \
--device_id=$DEVICE_ID \
--epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
fi
if [ $# == 7 ]
then
python ../train.py \
--distribute=1 \
--lr=$LR \
--dataset=$DATASET \
--device_num=$RANK_SIZE \
--device_id=$DEVICE_ID \
--pre_trained=$PRE_TRAINED \
--pre_trained_epoch_size=$PRE_TRAINED_EPOCH_SIZE \
--epoch_size=$EPOCH_SIZE > log.txt 2>&1 &
fi
cd ../
done
......@@ -16,79 +16,34 @@
"""train SSD and get checkpoint files."""
import os
import math
import argparse
import numpy as np
import mindspore.nn as nn
from mindspore import context, Tensor
from mindspore.communication.management import init
from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
from mindspore.train import Model, ParallelMode
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.common.initializer import initializer
from mindspore.model_zoo.ssd import SSD300, SSDWithLossCell, TrainingWrapper, ssd_mobilenet_v2
from config import ConfigSSD
from dataset import create_ssd_dataset, data_to_mindrecord_byte_image
from util import get_lr, init_net_param
def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch):
"""
generate learning rate array
Args:
global_step(int): total steps of the training
lr_init(float): init learning rate
lr_end(float): end learning rate
lr_max(float): max learning rate
warmup_epochs(int): number of warmup epochs
total_epochs(int): total epoch of training
steps_per_epoch(int): steps of one epoch
Returns:
np.array, learning rate array
"""
lr_each_step = []
total_steps = steps_per_epoch * total_epochs
warmup_steps = steps_per_epoch * warmup_epochs
for i in range(total_steps):
if i < warmup_steps:
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
else:
lr = lr_end + (lr_max - lr_end) * \
(1. + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps))) / 2.
if lr < 0.0:
lr = 0.0
lr_each_step.append(lr)
current_step = global_step
lr_each_step = np.array(lr_each_step).astype(np.float32)
learning_rate = lr_each_step[current_step:]
return learning_rate
def init_net_param(network, initialize_mode='XavierUniform'):
"""Init the parameters in net."""
params = network.trainable_params()
for p in params:
if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
p.set_parameter_data(initializer(initialize_mode, p.data.shape(), p.data.dtype()))
def main():
parser = argparse.ArgumentParser(description="SSD training")
parser.add_argument("--only_create_dataset", type=bool, default=False, help="If set it true, only create "
"Mindrecord, default is false.")
parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is false.")
"Mindrecord, default is False.")
parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is False.")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
parser.add_argument("--lr", type=float, default=0.25, help="Learning rate, default is 0.25.")
parser.add_argument("--lr", type=float, default=0.1, help="Learning rate, default is 0.1.")
parser.add_argument("--mode", type=str, default="sink", help="Run sink mode or not, default is sink.")
parser.add_argument("--dataset", type=str, default="coco", help="Dataset, defalut is coco.")
parser.add_argument("--epoch_size", type=int, default=70, help="Epoch size, default is 70.")
parser.add_argument("--epoch_size", type=int, default=250, help="Epoch size, default is 250.")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained Checkpoint file path.")
parser.add_argument("--save_checkpoint_epochs", type=int, default=5, help="Save checkpoint epochs, default is 5.")
parser.add_argument("--pre_trained_epoch_size", type=int, default=0, help="Pretrained epoch size.")
parser.add_argument("--save_checkpoint_epochs", type=int, default=10, help="Save checkpoint epochs, default is 5.")
parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
args_opt = parser.parse_args()
......@@ -142,7 +97,8 @@ def main():
dataset_size = dataset.get_dataset_size()
print("Create dataset done!")
ssd = SSD300(backbone=ssd_mobilenet_v2(), config=config)
backbone = ssd_mobilenet_v2()
ssd = SSD300(backbone=backbone, config=config)
net = SSDWithLossCell(ssd, config)
init_net_param(net)
......@@ -150,17 +106,19 @@ def main():
ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs)
ckpoint_cb = ModelCheckpoint(prefix="ssd", directory=None, config=ckpt_config)
lr = Tensor(get_lr(global_step=0, lr_init=0, lr_end=0, lr_max=args_opt.lr,
warmup_epochs=max(args_opt.epoch_size // 20, 1),
total_epochs=args_opt.epoch_size,
steps_per_epoch=dataset_size))
opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, 0.9, 0.0001, loss_scale)
net = TrainingWrapper(net, opt, loss_scale)
if args_opt.pre_trained:
if args_opt.pre_trained_epoch_size <= 0:
raise KeyError("pre_trained_epoch_size must be greater than 0.")
param_dict = load_checkpoint(args_opt.pre_trained)
load_param_into_net(net, param_dict)
lr = Tensor(get_lr(global_step=0, lr_init=0.001, lr_end=0.001 * args_opt.lr, lr_max=args_opt.lr,
warmup_epochs=2,
total_epochs=args_opt.epoch_size,
steps_per_epoch=dataset_size))
opt = nn.Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, 0.9, 1e-4, loss_scale)
net = TrainingWrapper(net, opt, loss_scale)
callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
model = Model(net)
......
......@@ -14,43 +14,83 @@
# ============================================================================
"""metrics utils"""
import os
import json
import math
import numpy as np
from mindspore import Tensor
from mindspore.common.initializer import initializer, TruncatedNormal
from config import ConfigSSD
from dataset import ssd_bboxes_decode
def calc_iou(bbox_pred, bbox_ground):
"""Calculate iou of predicted bbox and ground truth."""
bbox_pred = np.expand_dims(bbox_pred, axis=0)
pred_w = bbox_pred[:, 2] - bbox_pred[:, 0]
pred_h = bbox_pred[:, 3] - bbox_pred[:, 1]
pred_area = pred_w * pred_h
gt_w = bbox_ground[:, 2] - bbox_ground[:, 0]
gt_h = bbox_ground[:, 3] - bbox_ground[:, 1]
gt_area = gt_w * gt_h
iw = np.minimum(bbox_pred[:, 2], bbox_ground[:, 2]) - np.maximum(bbox_pred[:, 0], bbox_ground[:, 0])
ih = np.minimum(bbox_pred[:, 3], bbox_ground[:, 3]) - np.maximum(bbox_pred[:, 1], bbox_ground[:, 1])
iw = np.maximum(iw, 0)
ih = np.maximum(ih, 0)
intersection_area = iw * ih
def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch):
"""
generate learning rate array
Args:
global_step(int): total steps of the training
lr_init(float): init learning rate
lr_end(float): end learning rate
lr_max(float): max learning rate
warmup_epochs(int): number of warmup epochs
total_epochs(int): total epoch of training
steps_per_epoch(int): steps of one epoch
Returns:
np.array, learning rate array
"""
lr_each_step = []
total_steps = steps_per_epoch * total_epochs
warmup_steps = steps_per_epoch * warmup_epochs
for i in range(total_steps):
if i < warmup_steps:
lr = lr_init + (lr_max - lr_init) * i / warmup_steps
else:
lr = lr_end + \
(lr_max - lr_end) * \
(1. + math.cos(math.pi * (i - warmup_steps) / (total_steps - warmup_steps))) / 2.
if lr < 0.0:
lr = 0.0
lr_each_step.append(lr)
current_step = global_step
lr_each_step = np.array(lr_each_step).astype(np.float32)
learning_rate = lr_each_step[current_step:]
return learning_rate
def init_net_param(network, initialize_mode='TruncatedNormal'):
"""Init the parameters in net."""
params = network.trainable_params()
for p in params:
if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
if initialize_mode == 'TruncatedNormal':
p.set_parameter_data(initializer(TruncatedNormal(0.03), p.data.shape(), p.data.dtype()))
else:
p.set_parameter_data(initialize_mode, p.data.shape(), p.data.dtype())
union_area = pred_area + gt_area - intersection_area
union_area = np.maximum(union_area, np.finfo(float).eps)
iou = intersection_area * 1. / union_area
return iou
def load_backbone_params(network, param_dict):
"""Init the parameters from pre-train model, default is mobilenetv2."""
for _, param in net.parameters_and_names():
param_name = param.name.replace('network.backbone.', '')
name_split = param_name.split('.')
if 'features_1' in param_name:
param_name = param_name.replace('features_1', 'features')
if 'features_2' in param_name:
param_name = '.'.join(['features', str(int(name_split[1]) + 14)] + name_split[2:])
if param_name in param_dict:
param.set_parameter_data(param_dict[param_name].data)
def apply_nms(all_boxes, all_scores, thres, max_boxes):
"""Apply NMS to bboxes."""
x1 = all_boxes[:, 0]
y1 = all_boxes[:, 1]
x2 = all_boxes[:, 2]
y2 = all_boxes[:, 3]
y1 = all_boxes[:, 0]
x1 = all_boxes[:, 1]
y2 = all_boxes[:, 2]
x2 = all_boxes[:, 3]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = all_scores.argsort()[::-1]
......@@ -80,127 +120,73 @@ def apply_nms(all_boxes, all_scores, thres, max_boxes):
return keep
def calc_ap(recall, precision):
"""Calculate AP."""
correct_recall = np.concatenate(([0.], recall, [1.]))
correct_precision = np.concatenate(([0.], precision, [0.]))
for i in range(correct_recall.size - 1, 0, -1):
correct_precision[i - 1] = np.maximum(correct_precision[i - 1], correct_precision[i])
i = np.where(correct_recall[1:] != correct_recall[:-1])[0]
ap = np.sum((correct_recall[i + 1] - correct_recall[i]) * correct_precision[i + 1])
return ap
def metrics(pred_data):
"""Calculate mAP of predicted bboxes."""
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
config = ConfigSSD()
num_classes = config.NUM_CLASSES
all_detections = [None for i in range(num_classes)]
all_pred_scores = [None for i in range(num_classes)]
all_annotations = [None for i in range(num_classes)]
average_precisions = {}
num = [0 for i in range(num_classes)]
accurate_num = [0 for i in range(num_classes)]
coco_root = config.COCO_ROOT
data_type = config.VAL_DATA_TYPE
for sample in pred_data:
pred_boxes = sample['boxes']
boxes_scores = sample['box_scores']
annotation = sample['annotation']
#Classes need to train or test.
val_cls = config.COCO_CLASSES
val_cls_dict = {}
for i, cls in enumerate(val_cls):
val_cls_dict[i] = cls
annotation = np.squeeze(annotation, axis=0)
anno_json = os.path.join(coco_root, config.INSTANCES_SET.format(data_type))
coco_gt = COCO(anno_json)
classs_dict = {}
cat_ids = coco_gt.loadCats(coco_gt.getCatIds())
for cat in cat_ids:
classs_dict[cat["name"]] = cat["id"]
pred_labels = np.argmax(boxes_scores, axis=-1)
index = np.nonzero(pred_labels)
pred_boxes = ssd_bboxes_decode(pred_boxes, index)
predictions = []
img_ids = []
pred_boxes = pred_boxes.clip(0, 1)
boxes_scores = np.max(boxes_scores, axis=-1)
boxes_scores = boxes_scores[index]
pred_labels = pred_labels[index]
for sample in pred_data:
pred_boxes = sample['boxes']
box_scores = sample['box_scores']
img_id = sample['img_id']
h, w = sample['image_shape']
top_k = 50
pred_boxes = ssd_bboxes_decode(pred_boxes)
final_boxes = []
final_label = []
final_score = []
img_ids.append(img_id)
for c in range(1, num_classes):
if len(pred_labels) >= 1:
class_box_scores = boxes_scores[pred_labels == c]
class_boxes = pred_boxes[pred_labels == c]
nms_index = apply_nms(class_boxes, class_box_scores, config.MATCH_THRESHOLD, top_k)
class_box_scores = box_scores[:, c]
score_mask = class_box_scores > config.MIN_SCORE
class_box_scores = class_box_scores[score_mask]
class_boxes = pred_boxes[score_mask] * [h, w, h, w]
if score_mask.any():
nms_index = apply_nms(class_boxes, class_box_scores, config.NMS_THRESHOLD, config.TOP_K)
class_boxes = class_boxes[nms_index]
class_box_scores = class_box_scores[nms_index]
cmask = class_box_scores > 0.5
class_boxes = class_boxes[cmask]
class_box_scores = class_box_scores[cmask]
all_detections[c] = class_boxes
all_pred_scores[c] = class_box_scores
for c in range(1, num_classes):
if len(annotation) >= 1:
all_annotations[c] = annotation[annotation[:, 4] == c, :4]
for c in range(1, num_classes):
false_positives = np.zeros((0,))
true_positives = np.zeros((0,))
scores = np.zeros((0,))
num_annotations = 0.0
annotations = all_annotations[c]
num_annotations += annotations.shape[0]
detections = all_detections[c]
pred_scores = all_pred_scores[c]
for index, detection in enumerate(detections):
scores = np.append(scores, pred_scores[index])
if len(annotations) >= 1:
IoUs = calc_iou(detection, annotations)
assigned_anno = np.argmax(IoUs)
max_overlap = IoUs[assigned_anno]
if max_overlap >= 0.5:
false_positives = np.append(false_positives, 0)
true_positives = np.append(true_positives, 1)
else:
false_positives = np.append(false_positives, 1)
true_positives = np.append(true_positives, 0)
else:
false_positives = np.append(false_positives, 1)
true_positives = np.append(true_positives, 0)
if num_annotations == 0:
if c not in average_precisions.keys():
average_precisions[c] = 0
continue
accurate_num[c] = 1
indices = np.argsort(-scores)
false_positives = false_positives[indices]
true_positives = true_positives[indices]
false_positives = np.cumsum(false_positives)
true_positives = np.cumsum(true_positives)
recall = true_positives * 1. / num_annotations
precision = true_positives * 1. / np.maximum(true_positives + false_positives, np.finfo(np.float64).eps)
average_precision = calc_ap(recall, precision)
if c not in average_precisions.keys():
average_precisions[c] = average_precision
else:
average_precisions[c] += average_precision
num[c] += 1
count = 0
for key in average_precisions:
if num[key] != 0:
count += (average_precisions[key] / num[key])
mAP = count * 1. / accurate_num.count(1)
return mAP
final_boxes += class_boxes.tolist()
final_score += class_box_scores.tolist()
final_label += [classs_dict[val_cls_dict[c]]] * len(class_box_scores)
for loc, label, score in zip(final_boxes, final_label, final_score):
res = {}
res['image_id'] = img_id
res['bbox'] = [loc[1], loc[0], loc[3] - loc[1], loc[2] - loc[0]]
res['score'] = score
res['category_id'] = label
predictions.append(res)
with open('predictions.json', 'w') as f:
json.dump(predictions, f)
coco_dt = coco_gt.loadRes('predictions.json')
E = COCOeval(coco_gt, coco_dt, iouType='bbox')
E.params.imgIds = img_ids
E.evaluate()
E.accumulate()
E.summarize()
return E.stats[0]
......@@ -17,22 +17,13 @@
import mindspore.common.dtype as mstype
import mindspore as ms
import mindspore.nn as nn
from mindspore import context
from mindspore import Parameter, context, Tensor
from mindspore.parallel._auto_parallel_context import auto_parallel_context
from mindspore.communication.management import get_group_size
from mindspore.ops import operations as P
from mindspore.ops import functional as F
from mindspore.ops import composite as C
from mindspore.common.initializer import initializer
from mindspore.ops.operations import TensorAdd
from mindspore import Parameter
def _conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod='same'):
weight_shape = (out_channel, in_channel, kernel_size, kernel_size)
weight = initializer('XavierUniform', shape=weight_shape, dtype=mstype.float32).to_tensor()
return nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=stride,
padding=0, pad_mode=pad_mod, weight_init=weight)
def _make_divisible(v, divisor, min_value=None):
......@@ -46,6 +37,55 @@ def _make_divisible(v, divisor, min_value=None):
return new_v
def _conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod='same'):
return nn.Conv2d(in_channel, out_channel, kernel_size=kernel_size, stride=stride,
padding=0, pad_mode=pad_mod, has_bias=True)
def _bn(channel):
return nn.BatchNorm2d(channel, eps=1e-3, momentum=0.97,
gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
def _last_conv2d(in_channel, out_channel, kernel_size=3, stride=1, pad_mod='same', pad=0):
depthwise_conv = DepthwiseConv(in_channel, kernel_size, stride, pad_mode='same', pad=pad)
conv = _conv2d(in_channel, out_channel, kernel_size=1)
return nn.SequentialCell([depthwise_conv, _bn(in_channel), nn.ReLU6(), conv])
class ConvBNReLU(nn.Cell):
"""
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
Args:
in_planes (int): Input channel.
out_planes (int): Output channel.
kernel_size (int): Input kernel size.
stride (int): Stride size for the first convolutional layer. Default: 1.
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
Returns:
Tensor, output tensor.
Examples:
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
"""
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
super(ConvBNReLU, self).__init__()
padding = 0
if groups == 1:
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='same',
padding=padding)
else:
conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='same', pad=padding)
layers = [conv, _bn(out_planes), nn.ReLU6()]
self.features = nn.SequentialCell(layers)
def construct(self, x):
output = self.features(x)
return output
class DepthwiseConv(nn.Cell):
"""
Depthwise Convolution warpper definition.
......@@ -64,6 +104,7 @@ class DepthwiseConv(nn.Cell):
Examples:
>>> DepthwiseConv(16, 3, 1, 'pad', 1, channel_multiplier=1)
"""
def __init__(self, in_planes, kernel_size, stride, pad_mode, pad, channel_multiplier=1, has_bias=False):
super(DepthwiseConv, self).__init__()
self.has_bias = has_bias
......@@ -91,42 +132,9 @@ class DepthwiseConv(nn.Cell):
return output
class ConvBNReLU(nn.Cell):
"""
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
Args:
in_planes (int): Input channel.
out_planes (int): Output channel.
kernel_size (int): Input kernel size.
stride (int): Stride size for the first convolutional layer. Default: 1.
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
Returns:
Tensor, output tensor.
Examples:
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
"""
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
if groups == 1:
conv = nn.Conv2d(in_planes, out_planes, kernel_size, stride, pad_mode='pad',
padding=padding)
else:
conv = DepthwiseConv(in_planes, kernel_size, stride, pad_mode='pad', pad=padding)
layers = [conv, nn.BatchNorm2d(out_planes), nn.ReLU6()]
self.features = nn.SequentialCell(layers)
def construct(self, x):
output = self.features(x)
return output
class InvertedResidual(nn.Cell):
"""
Mobilenetv2 residual block definition.
Residual block definition.
Args:
inp (int): Input channel.
......@@ -140,7 +148,7 @@ class InvertedResidual(nn.Cell):
Examples:
>>> ResidualBlock(3, 256, 1, 1)
"""
def __init__(self, inp, oup, stride, expand_ratio):
def __init__(self, inp, oup, stride, expand_ratio, last_relu=False):
super(InvertedResidual, self).__init__()
assert stride in [1, 2]
......@@ -155,17 +163,21 @@ class InvertedResidual(nn.Cell):
ConvBNReLU(hidden_dim, hidden_dim, stride=stride, groups=hidden_dim),
# pw-linear
nn.Conv2d(hidden_dim, oup, kernel_size=1, stride=1, has_bias=False),
nn.BatchNorm2d(oup),
_bn(oup),
])
self.conv = nn.SequentialCell(layers)
self.add = TensorAdd()
self.add = P.TensorAdd()
self.cast = P.Cast()
self.last_relu = last_relu
self.relu = nn.ReLU6()
def construct(self, x):
identity = x
x = self.conv(x)
if self.use_res_connect:
return self.add(identity, x)
x = self.add(identity, x)
if self.last_relu:
x = self.relu(x)
return x
......@@ -214,10 +226,10 @@ class MultiBox(nn.Cell):
loc_layers = []
cls_layers = []
for k, out_channel in enumerate(out_channels):
loc_layers += [_conv2d(out_channel, 4 * num_default[k],
kernel_size=3, stride=1, pad_mod='same')]
cls_layers += [_conv2d(out_channel, num_classes * num_default[k],
kernel_size=3, stride=1, pad_mod='same')]
loc_layers += [_last_conv2d(out_channel, 4 * num_default[k],
kernel_size=3, stride=1, pad_mod='same', pad=0)]
cls_layers += [_last_conv2d(out_channel, num_classes * num_default[k],
kernel_size=3, stride=1, pad_mod='same', pad=0)]
self.multi_loc_layers = nn.layer.CellList(loc_layers)
self.multi_cls_layers = nn.layer.CellList(cls_layers)
......@@ -258,13 +270,14 @@ class SSD300(nn.Cell):
strides = config.EXTRAS_STRIDES
residual_list = []
for i in range(2, len(in_channels)):
residual = InvertedResidual(in_channels[i], out_channels[i], stride=strides[i], expand_ratio=ratios[i])
residual = InvertedResidual(in_channels[i], out_channels[i], stride=strides[i],
expand_ratio=ratios[i], last_relu=True)
residual_list.append(residual)
self.multi_residual = nn.layer.CellList(residual_list)
self.multi_box = MultiBox(config)
self.is_training = is_training
if not is_training:
self.softmax = P.Softmax()
self.activation = P.Sigmoid()
def construct(self, x):
layer_out_13, output = self.backbone(x)
......@@ -275,77 +288,42 @@ class SSD300(nn.Cell):
multi_feature += (feature,)
pred_loc, pred_label = self.multi_box(multi_feature)
if not self.is_training:
pred_label = self.softmax(pred_label)
pred_label = self.activation(pred_label)
return pred_loc, pred_label
class LocalizationLoss(nn.Cell):
class SigmoidFocalClassificationLoss(nn.Cell):
""""
Computes the localization loss with SmoothL1Loss.
Returns:
Tensor, box regression loss.
"""
def __init__(self):
super(LocalizationLoss, self).__init__()
self.reduce_sum = P.ReduceSum()
self.reduce_mean = P.ReduceMean()
self.loss = nn.SmoothL1Loss()
self.expand_dims = P.ExpandDims()
self.less = P.Less()
def construct(self, pred_loc, gt_loc, gt_label, num_matched_boxes):
mask = F.cast(self.less(0, gt_label), mstype.float32)
mask = self.expand_dims(mask, -1)
smooth_l1 = self.loss(gt_loc, pred_loc) * mask
box_loss = self.reduce_sum(smooth_l1, 1)
return self.reduce_mean(box_loss / F.cast(num_matched_boxes, mstype.float32), (0, 1))
class ClassificationLoss(nn.Cell):
""""
Computes the classification loss with hard example mining.
Sigmoid focal-loss for classification.
Args:
config (Class): The default config of SSD.
gamma (float): Hyper-parameter to balance the easy and hard examples. Default: 2.0
alpha (float): Hyper-parameter to balance the positive and negative example. Default: 0.25
Returns:
Tensor, classification loss.
Tensor, the focal loss.
"""
def __init__(self, config):
super(ClassificationLoss, self).__init__()
self.num_classes = config.NUM_CLASSES
self.num_boxes = config.NUM_SSD_BOXES
self.neg_pre_positive = config.NEG_PRE_POSITIVE
self.minimum = P.Minimum()
self.less = P.Less()
self.sort = P.TopK()
self.tile = P.Tile()
self.reduce_sum = P.ReduceSum()
self.reduce_mean = P.ReduceMean()
self.expand_dims = P.ExpandDims()
self.sort_descend = P.TopK(True)
self.cross_entropy = nn.SoftmaxCrossEntropyWithLogits(sparse=True)
def construct(self, pred_label, gt_label, num_matched_boxes):
gt_label = F.cast(gt_label, mstype.int32)
mask = F.cast(self.less(0, gt_label), mstype.float32)
gt_label_shape = F.shape(gt_label)
pred_label = F.reshape(pred_label, (-1, self.num_classes))
gt_label = F.reshape(gt_label, (-1,))
cross_entropy = self.cross_entropy(pred_label, gt_label)
cross_entropy = F.reshape(cross_entropy, gt_label_shape)
# Hard example mining
num_matched_boxes = F.reshape(num_matched_boxes, (-1,))
neg_masked_cross_entropy = F.cast(cross_entropy * (1- mask), mstype.float16)
_, loss_idx = self.sort_descend(neg_masked_cross_entropy, self.num_boxes)
_, relative_position = self.sort(F.cast(loss_idx, mstype.float16), self.num_boxes)
num_neg_boxes = self.minimum(num_matched_boxes * self.neg_pre_positive, self.num_boxes)
tile_num_neg_boxes = self.tile(self.expand_dims(num_neg_boxes, -1), (1, self.num_boxes))
top_k_neg_mask = F.cast(self.less(relative_position, tile_num_neg_boxes), mstype.float32)
class_loss = self.reduce_sum(cross_entropy * (mask + top_k_neg_mask), 1)
return self.reduce_mean(class_loss / F.cast(num_matched_boxes, mstype.float32), 0)
def __init__(self, gamma=2.0, alpha=0.75):
super(SigmoidFocalClassificationLoss, self).__init__()
self.sigmiod_cross_entropy = P.SigmoidCrossEntropyWithLogits()
self.sigmoid = P.Sigmoid()
self.pow = P.Pow()
self.onehot = P.OneHot()
self.on_value = Tensor(1.0, mstype.float32)
self.off_value = Tensor(0.0, mstype.float32)
self.gamma = gamma
self.alpha = alpha
def construct(self, logits, label):
label = self.onehot(label, F.shape(logits)[-1], self.on_value, self.off_value)
sigmiod_cross_entropy = self.sigmiod_cross_entropy(logits, label)
sigmoid = self.sigmoid(logits)
label = F.cast(label, mstype.float32)
p_t = label * sigmoid + (1 - label) * (1 - sigmoid)
modulating_factor = self.pow(1 - p_t, self.gamma)
alpha_weight_factor = label * self.alpha + (1 - label) * (1 - self.alpha)
focal_loss = modulating_factor * alpha_weight_factor * sigmiod_cross_entropy
return focal_loss
class SSDWithLossCell(nn.Cell):
......@@ -362,14 +340,29 @@ class SSDWithLossCell(nn.Cell):
def __init__(self, network, config):
super(SSDWithLossCell, self).__init__()
self.network = network
self.class_loss = ClassificationLoss(config)
self.box_loss = LocalizationLoss()
self.less = P.Less()
self.tile = P.Tile()
self.reduce_sum = P.ReduceSum()
self.reduce_mean = P.ReduceMean()
self.expand_dims = P.ExpandDims()
self.class_loss = SigmoidFocalClassificationLoss()
self.loc_loss = nn.SmoothL1Loss()
def construct(self, x, gt_loc, gt_label, num_matched_boxes):
pred_loc, pred_label = self.network(x)
loss_cls = self.class_loss(pred_label, gt_label, num_matched_boxes)
loss_loc = self.box_loss(pred_loc, gt_loc, gt_label, num_matched_boxes)
return loss_cls + loss_loc
mask = F.cast(self.less(0, gt_label), mstype.float32)
num_matched_boxes = self.reduce_sum(F.cast(num_matched_boxes, mstype.float32))
# Localization Loss
mask_loc = self.tile(self.expand_dims(mask, -1), (1, 1, 4))
smooth_l1 = self.loc_loss(pred_loc, gt_loc) * mask_loc
loss_loc = self.reduce_sum(self.reduce_mean(smooth_l1, -1), -1)
# Classification Loss
loss_cls = self.class_loss(pred_label, gt_label)
loss_cls = self.reduce_sum(loss_cls, (1, 2))
return self.reduce_sum((loss_cls + loss_loc) / num_matched_boxes)
class TrainingWrapper(nn.Cell):
......@@ -415,7 +408,6 @@ class TrainingWrapper(nn.Cell):
return F.depend(loss, self.optimizer(grads))
class SSDWithMobileNetV2(nn.Cell):
"""
MobileNetV2 architecture for SSD backbone.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册