Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
4878616e
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4878616e
编写于
6月 16, 2020
作者:
C
chenzomi
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
change combined to nn
上级
703c1b26
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
205 addition
and
223 deletion
+205
-223
mindspore/nn/layer/combined.py
mindspore/nn/layer/combined.py
+0
-182
mindspore/nn/layer/quant.py
mindspore/nn/layer/quant.py
+169
-2
mindspore/train/quant/quant.py
mindspore/train/quant/quant.py
+3
-4
tests/ut/python/train/quant/mobilenetv2_combined.py
tests/ut/python/train/quant/mobilenetv2_combined.py
+27
-28
tests/ut/python/train/quant/test_quant.py
tests/ut/python/train/quant/test_quant.py
+6
-7
未找到文件。
mindspore/nn/layer/combined.py
已删除
100644 → 0
浏览文件 @
703c1b26
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Use combination of Conv, Dense, Relu, Batchnorm."""
from
.normalization
import
BatchNorm2d
from
.activation
import
get_activation
from
..cell
import
Cell
from
.
import
conv
,
basic
from
..._checkparam
import
ParamValidator
as
validator
__all__
=
[
'Conv2d'
,
'Dense'
]
class
Conv2d
(
Cell
):
r
"""
A combination of convolution, Batchnorm, activation layer.
For a more Detailed overview of Conv2d op.
Args:
in_channels (int): The number of input channel :math:`C_{in}`.
out_channels (int): The number of output channel :math:`C_{out}`.
kernel_size (Union[int, tuple]): The data type is int or tuple with 2 integers. Specifies the height
and width of the 2D convolution window. Single int means the value if for both height and width of
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
width of the kernel.
stride (int): Specifies stride for all spatial dimensions with the same value. Value of stride should be
greater or equal to 1 but bounded by the height and width of the input. Default: 1.
pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same".
padding (int): Implicit paddings on both sides of the input. Default: 0.
dilation (int): Specifying the dilation rate to use for dilated convolution. If set to be :math:`k > 1`,
there will be :math:`k - 1` pixels skipped for each sampling location. Its value should be greater
or equal to 1 and bounded by the height and width of the input. Default: 1.
group (int): Split filter into groups, `in_ channels` and `out_channels` should be
divisible by the number of groups. Default: 1.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
It can be a Tensor, a string, an Initializer or a numbers.Number. When a string is specified,
values from 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform' and 'XavierUniform' distributions as well
as constant 'One' and 'Zero' distributions are possible. Alias 'xavier_uniform', 'he_uniform', 'ones'
and 'zeros' are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of
Initializer for more details. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Possible
Initializer and string are the same as 'weight_init'. Refer to the values of
Initializer for more details. Default: 'zeros'.
batchnorm (bool): Specifies to used batchnorm or not. Default: None.
activation (string): Specifies activation type. The optional values are as following:
'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid',
'prelu', 'leakyrelu', 'hswish', 'hsigmoid'. Default: None.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Examples:
>>> net = combined.Conv2d(120, 240, 4, batchnorm=True, activation='ReLU')
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> net(input).shape
(1, 240, 1024, 640)
"""
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
pad_mode
=
'same'
,
padding
=
0
,
dilation
=
1
,
group
=
1
,
has_bias
=
False
,
weight_init
=
'normal'
,
bias_init
=
'zeros'
,
batchnorm
=
None
,
activation
=
None
):
super
(
Conv2d
,
self
).
__init__
()
self
.
conv
=
conv
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
,
stride
,
pad_mode
,
padding
,
dilation
,
group
,
has_bias
,
weight_init
,
bias_init
)
self
.
has_bn
=
batchnorm
is
not
None
self
.
has_act
=
activation
is
not
None
self
.
batchnorm
=
batchnorm
if
batchnorm
is
True
:
self
.
batchnorm
=
BatchNorm2d
(
out_channels
)
elif
batchnorm
is
not
None
:
validator
.
check_isinstance
(
'batchnorm'
,
batchnorm
,
(
BatchNorm2d
,))
self
.
activation
=
get_activation
(
activation
)
def
construct
(
self
,
x
):
x
=
self
.
conv
(
x
)
if
self
.
has_bn
:
x
=
self
.
batchnorm
(
x
)
if
self
.
has_act
:
x
=
self
.
activation
(
x
)
return
x
class
Dense
(
Cell
):
r
"""
A combination of Dense, Batchnorm, activation layer.
For a more Detailed overview of Dense op.
Args:
in_channels (int): The number of channels in the input space.
out_channels (int): The number of channels in the output space.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
batchnorm (bool): Specifies to used batchnorm or not. Default: None.
activation (string): Specifies activation type. The optional values are as following:
'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid',
'prelu', 'leakyrelu', 'hswish', 'hsigmoid'. Default: None.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`.
Outputs:
Tensor of shape :math:`(N, out\_channels)`.
Examples:
>>> net = nn.Dense(3, 4)
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
>>> net(input)
"""
def
__init__
(
self
,
in_channels
,
out_channels
,
weight_init
=
'normal'
,
bias_init
=
'zeros'
,
has_bias
=
True
,
batchnorm
=
None
,
activation
=
None
):
super
(
Dense
,
self
).
__init__
()
self
.
dense
=
basic
.
Dense
(
in_channels
,
out_channels
,
weight_init
,
bias_init
,
has_bias
)
self
.
has_bn
=
batchnorm
is
not
None
self
.
has_act
=
activation
is
not
None
if
batchnorm
is
True
:
self
.
batchnorm
=
BatchNorm2d
(
out_channels
)
elif
batchnorm
is
not
None
:
validator
.
check_isinstance
(
'batchnorm'
,
batchnorm
,
(
BatchNorm2d
,))
self
.
activation
=
get_activation
(
activation
)
def
construct
(
self
,
x
):
x
=
self
.
dense
(
x
)
if
self
.
has_bn
:
x
=
self
.
batchnorm
(
x
)
if
self
.
has_act
:
x
=
self
.
activation
(
x
)
return
x
mindspore/nn/layer/quant.py
浏览文件 @
4878616e
...
@@ -27,8 +27,16 @@ from mindspore._checkparam import Validator as validator, Rel
...
@@ -27,8 +27,16 @@ from mindspore._checkparam import Validator as validator, Rel
from
mindspore.nn.cell
import
Cell
from
mindspore.nn.cell
import
Cell
from
mindspore.nn.layer.activation
import
get_activation
from
mindspore.nn.layer.activation
import
get_activation
import
mindspore.context
as
context
import
mindspore.context
as
context
from
.normalization
import
BatchNorm2d
from
.activation
import
get_activation
from
..cell
import
Cell
from
.
import
conv
,
basic
from
..._checkparam
import
ParamValidator
as
validator
__all__
=
[
__all__
=
[
'Conv2dBnAct'
,
'DenseBnAct'
,
'FakeQuantWithMinMax'
,
'FakeQuantWithMinMax'
,
'Conv2dBatchNormQuant'
,
'Conv2dBatchNormQuant'
,
'Conv2dQuant'
,
'Conv2dQuant'
,
...
@@ -42,6 +50,165 @@ __all__ = [
...
@@ -42,6 +50,165 @@ __all__ = [
]
]
class
Conv2dBnAct
(
Cell
):
r
"""
A combination of convolution, Batchnorm, activation layer.
For a more Detailed overview of Conv2d op.
Args:
in_channels (int): The number of input channel :math:`C_{in}`.
out_channels (int): The number of output channel :math:`C_{out}`.
kernel_size (Union[int, tuple]): The data type is int or tuple with 2 integers. Specifies the height
and width of the 2D convolution window. Single int means the value if for both height and width of
the kernel. A tuple of 2 ints means the first value is for the height and the other is for the
width of the kernel.
stride (int): Specifies stride for all spatial dimensions with the same value. Value of stride should be
greater or equal to 1 but bounded by the height and width of the input. Default: 1.
pad_mode (str): Specifies padding mode. The optional values are "same", "valid", "pad". Default: "same".
padding (int): Implicit paddings on both sides of the input. Default: 0.
dilation (int): Specifying the dilation rate to use for dilated convolution. If set to be :math:`k > 1`,
there will be :math:`k - 1` pixels skipped for each sampling location. Its value should be greater
or equal to 1 and bounded by the height and width of the input. Default: 1.
group (int): Split filter into groups, `in_ channels` and `out_channels` should be
divisible by the number of groups. Default: 1.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: False.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the convolution kernel.
It can be a Tensor, a string, an Initializer or a numbers.Number. When a string is specified,
values from 'TruncatedNormal', 'Normal', 'Uniform', 'HeUniform' and 'XavierUniform' distributions as well
as constant 'One' and 'Zero' distributions are possible. Alias 'xavier_uniform', 'he_uniform', 'ones'
and 'zeros' are acceptable. Uppercase and lowercase are both acceptable. Refer to the values of
Initializer for more details. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): Initializer for the bias vector. Possible
Initializer and string are the same as 'weight_init'. Refer to the values of
Initializer for more details. Default: 'zeros'.
batchnorm (bool): Specifies to used batchnorm or not. Default: None.
activation (string): Specifies activation type. The optional values are as following:
'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid',
'prelu', 'leakyrelu', 'hswish', 'hsigmoid'. Default: None.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, C_{in}, H_{in}, W_{in})`.
Outputs:
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`.
Examples:
>>> net = Conv2dBnAct(120, 240, 4, batchnorm=True, activation='ReLU')
>>> input = Tensor(np.ones([1, 120, 1024, 640]), mindspore.float32)
>>> net(input).shape
(1, 240, 1024, 640)
"""
def
__init__
(
self
,
in_channels
,
out_channels
,
kernel_size
,
stride
=
1
,
pad_mode
=
'same'
,
padding
=
0
,
dilation
=
1
,
group
=
1
,
has_bias
=
False
,
weight_init
=
'normal'
,
bias_init
=
'zeros'
,
batchnorm
=
None
,
activation
=
None
):
super
(
Conv2dBnAct
,
self
).
__init__
()
self
.
conv
=
conv
.
Conv2d
(
in_channels
,
out_channels
,
kernel_size
,
stride
,
pad_mode
,
padding
,
dilation
,
group
,
has_bias
,
weight_init
,
bias_init
)
self
.
has_bn
=
batchnorm
is
not
None
self
.
has_act
=
activation
is
not
None
self
.
batchnorm
=
batchnorm
if
batchnorm
is
True
:
self
.
batchnorm
=
BatchNorm2d
(
out_channels
)
elif
batchnorm
is
not
None
:
validator
.
check_isinstance
(
'batchnorm'
,
batchnorm
,
(
BatchNorm2d
,))
self
.
activation
=
get_activation
(
activation
)
def
construct
(
self
,
x
):
x
=
self
.
conv
(
x
)
if
self
.
has_bn
:
x
=
self
.
batchnorm
(
x
)
if
self
.
has_act
:
x
=
self
.
activation
(
x
)
return
x
class
DenseBnAct
(
Cell
):
r
"""
A combination of Dense, Batchnorm, activation layer.
For a more Detailed overview of Dense op.
Args:
in_channels (int): The number of channels in the input space.
out_channels (int): The number of channels in the output space.
weight_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable weight_init parameter. The dtype
is same as input x. The values of str refer to the function `initializer`. Default: 'normal'.
bias_init (Union[Tensor, str, Initializer, numbers.Number]): The trainable bias_init parameter. The dtype is
same as input x. The values of str refer to the function `initializer`. Default: 'zeros'.
has_bias (bool): Specifies whether the layer uses a bias vector. Default: True.
activation (str): Regularizer function applied to the output of the layer, eg. 'relu'. Default: None.
batchnorm (bool): Specifies to used batchnorm or not. Default: None.
activation (string): Specifies activation type. The optional values are as following:
'softmax', 'logsoftmax', 'relu', 'relu6', 'tanh', 'gelu', 'sigmoid',
'prelu', 'leakyrelu', 'hswish', 'hsigmoid'. Default: None.
Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`.
Outputs:
Tensor of shape :math:`(N, out\_channels)`.
Examples:
>>> net = nn.Dense(3, 4)
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
>>> net(input)
"""
def
__init__
(
self
,
in_channels
,
out_channels
,
weight_init
=
'normal'
,
bias_init
=
'zeros'
,
has_bias
=
True
,
batchnorm
=
None
,
activation
=
None
):
super
(
DenseBnAct
,
self
).
__init__
()
self
.
dense
=
basic
.
Dense
(
in_channels
,
out_channels
,
weight_init
,
bias_init
,
has_bias
)
self
.
has_bn
=
batchnorm
is
not
None
self
.
has_act
=
activation
is
not
None
if
batchnorm
is
True
:
self
.
batchnorm
=
BatchNorm2d
(
out_channels
)
elif
batchnorm
is
not
None
:
validator
.
check_isinstance
(
'batchnorm'
,
batchnorm
,
(
BatchNorm2d
,))
self
.
activation
=
get_activation
(
activation
)
def
construct
(
self
,
x
):
x
=
self
.
dense
(
x
)
if
self
.
has_bn
:
x
=
self
.
batchnorm
(
x
)
if
self
.
has_act
:
x
=
self
.
activation
(
x
)
return
x
class
BatchNormFoldCell
(
Cell
):
class
BatchNormFoldCell
(
Cell
):
"""
"""
Batch normalization folded.
Batch normalization folded.
...
@@ -302,8 +469,8 @@ class Conv2dBatchNormQuant(Cell):
...
@@ -302,8 +469,8 @@ class Conv2dBatchNormQuant(Cell):
# initialize convolution op and Parameter
# initialize convolution op and Parameter
if
context
.
get_context
(
'device_target'
)
==
"Ascend"
and
group
>
1
:
if
context
.
get_context
(
'device_target'
)
==
"Ascend"
and
group
>
1
:
validator
.
check_integer
(
'group'
,
group
,
in_channels
,
Rel
.
EQ
,
'Conv2dBatchNormQuant'
)
validator
.
check_integer
(
'group'
,
group
,
in_channels
,
Rel
.
EQ
)
validator
.
check_integer
(
'group'
,
group
,
out_channels
,
Rel
.
EQ
,
'Conv2dBatchNormQuant'
)
validator
.
check_integer
(
'group'
,
group
,
out_channels
,
Rel
.
EQ
)
self
.
conv
=
P
.
DepthwiseConv2dNative
(
channel_multiplier
=
1
,
self
.
conv
=
P
.
DepthwiseConv2dNative
(
channel_multiplier
=
1
,
kernel_size
=
self
.
kernel_size
,
kernel_size
=
self
.
kernel_size
,
pad_mode
=
pad_mode
,
pad_mode
=
pad_mode
,
...
...
mindspore/train/quant/quant.py
浏览文件 @
4878616e
...
@@ -19,7 +19,6 @@ from ... import nn
...
@@ -19,7 +19,6 @@ from ... import nn
from
...
import
ops
from
...
import
ops
from
..._checkparam
import
ParamValidator
as
validator
from
..._checkparam
import
ParamValidator
as
validator
from
..._checkparam
import
Rel
from
..._checkparam
import
Rel
from
...nn.layer
import
combined
from
...nn.layer
import
quant
from
...nn.layer
import
quant
_ACTIVATION_MAP
=
{
nn
.
ReLU
:
quant
.
ReLUQuant
,
_ACTIVATION_MAP
=
{
nn
.
ReLU
:
quant
.
ReLUQuant
,
...
@@ -123,13 +122,13 @@ class ConvertToQuantNetwork:
...
@@ -123,13 +122,13 @@ class ConvertToQuantNetwork:
subcell
=
cells
[
name
]
subcell
=
cells
[
name
]
if
subcell
==
network
:
if
subcell
==
network
:
continue
continue
elif
isinstance
(
subcell
,
combined
.
Conv2d
):
elif
isinstance
(
subcell
,
quant
.
Conv2dBnAct
):
prefix
=
subcell
.
param_prefix
prefix
=
subcell
.
param_prefix
new_subcell
=
self
.
_convert_conv
(
subcell
)
new_subcell
=
self
.
_convert_conv
(
subcell
)
new_subcell
.
update_parameters_name
(
prefix
+
'.'
)
new_subcell
.
update_parameters_name
(
prefix
+
'.'
)
network
.
insert_child_to_cell
(
name
,
new_subcell
)
network
.
insert_child_to_cell
(
name
,
new_subcell
)
change
=
True
change
=
True
elif
isinstance
(
subcell
,
combined
.
Dense
):
elif
isinstance
(
subcell
,
quant
.
DenseBnAct
):
prefix
=
subcell
.
param_prefix
prefix
=
subcell
.
param_prefix
new_subcell
=
self
.
_convert_dense
(
subcell
)
new_subcell
=
self
.
_convert_dense
(
subcell
)
new_subcell
.
update_parameters_name
(
prefix
+
'.'
)
new_subcell
.
update_parameters_name
(
prefix
+
'.'
)
...
@@ -159,7 +158,7 @@ class ConvertToQuantNetwork:
...
@@ -159,7 +158,7 @@ class ConvertToQuantNetwork:
def
_convert_conv
(
self
,
subcell
):
def
_convert_conv
(
self
,
subcell
):
"""
"""
convet conv cell to
combine
cell
convet conv cell to
quant
cell
"""
"""
conv_inner
=
subcell
.
conv
conv_inner
=
subcell
.
conv
bn_inner
=
subcell
.
batchnorm
bn_inner
=
subcell
.
batchnorm
...
...
tests/ut/python/train/quant/mobilenetv2_combined.py
浏览文件 @
4878616e
"""mobile net v2"""
"""mobile net v2"""
from
mindspore
import
nn
from
mindspore
import
nn
from
mindspore.nn.layer
import
combined
from
mindspore.ops
import
operations
as
P
from
mindspore.ops
import
operations
as
P
...
@@ -14,7 +13,7 @@ def _conv_bn(in_channel,
...
@@ -14,7 +13,7 @@ def _conv_bn(in_channel,
stride
=
1
):
stride
=
1
):
"""Get a conv2d batchnorm and relu layer."""
"""Get a conv2d batchnorm and relu layer."""
return
nn
.
SequentialCell
(
return
nn
.
SequentialCell
(
[
combined
.
Conv2d
(
in_channel
,
[
nn
.
Conv2dBnAct
(
in_channel
,
out_channel
,
out_channel
,
kernel_size
=
ksize
,
kernel_size
=
ksize
,
stride
=
stride
,
stride
=
stride
,
...
@@ -31,29 +30,29 @@ class InvertedResidual(nn.Cell):
...
@@ -31,29 +30,29 @@ class InvertedResidual(nn.Cell):
self
.
use_res_connect
=
self
.
stride
==
1
and
inp
==
oup
self
.
use_res_connect
=
self
.
stride
==
1
and
inp
==
oup
if
expend_ratio
==
1
:
if
expend_ratio
==
1
:
self
.
conv
=
nn
.
SequentialCell
([
self
.
conv
=
nn
.
SequentialCell
([
combined
.
Conv2d
(
hidden_dim
,
nn
.
Conv2dBnAct
(
hidden_dim
,
hidden_dim
,
hidden_dim
,
3
,
3
,
stride
,
stride
,
group
=
hidden_dim
,
group
=
hidden_dim
,
batchnorm
=
True
,
batchnorm
=
True
,
activation
=
'relu6'
),
activation
=
'relu6'
),
combined
.
Conv2d
(
hidden_dim
,
oup
,
1
,
1
,
nn
.
Conv2dBnAct
(
hidden_dim
,
oup
,
1
,
1
,
batchnorm
=
True
)
batchnorm
=
True
)
])
])
else
:
else
:
self
.
conv
=
nn
.
SequentialCell
([
self
.
conv
=
nn
.
SequentialCell
([
combined
.
Conv2d
(
inp
,
hidden_dim
,
1
,
1
,
nn
.
Conv2dBnAct
(
inp
,
hidden_dim
,
1
,
1
,
batchnorm
=
True
,
batchnorm
=
True
,
activation
=
'relu6'
),
activation
=
'relu6'
),
combined
.
Conv2d
(
hidden_dim
,
nn
.
Conv2dBnAct
(
hidden_dim
,
hidden_dim
,
hidden_dim
,
3
,
3
,
stride
,
stride
,
group
=
hidden_dim
,
group
=
hidden_dim
,
batchnorm
=
True
,
batchnorm
=
True
,
activation
=
'relu6'
),
activation
=
'relu6'
),
combined
.
Conv2d
(
hidden_dim
,
oup
,
1
,
1
,
nn
.
Conv2dBnAct
(
hidden_dim
,
oup
,
1
,
1
,
batchnorm
=
True
)
batchnorm
=
True
)
])
])
self
.
add
=
P
.
TensorAdd
()
self
.
add
=
P
.
TensorAdd
()
...
@@ -99,7 +98,7 @@ class MobileNetV2(nn.Cell):
...
@@ -99,7 +98,7 @@ class MobileNetV2(nn.Cell):
self
.
features
=
nn
.
SequentialCell
(
features
)
self
.
features
=
nn
.
SequentialCell
(
features
)
self
.
mean
=
P
.
ReduceMean
(
keep_dims
=
False
)
self
.
mean
=
P
.
ReduceMean
(
keep_dims
=
False
)
self
.
classifier
=
combined
.
Dense
(
self
.
last_channel
,
num_class
)
self
.
classifier
=
nn
.
DenseBnAct
(
self
.
last_channel
,
num_class
)
def
construct
(
self
,
input_x
):
def
construct
(
self
,
input_x
):
out
=
input_x
out
=
input_x
...
...
tests/ut/python/train/quant/test_quant.py
浏览文件 @
4878616e
...
@@ -15,7 +15,7 @@
...
@@ -15,7 +15,7 @@
""" tests for quant """
""" tests for quant """
import
mindspore.context
as
context
import
mindspore.context
as
context
from
mindspore
import
nn
from
mindspore
import
nn
from
mindspore.nn.layer
import
combined
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
context
.
set_context
(
mode
=
context
.
GRAPH_MODE
,
device_target
=
"GPU"
)
...
@@ -37,12 +37,11 @@ class LeNet5(nn.Cell):
...
@@ -37,12 +37,11 @@ class LeNet5(nn.Cell):
def
__init__
(
self
,
num_class
=
10
):
def
__init__
(
self
,
num_class
=
10
):
super
(
LeNet5
,
self
).
__init__
()
super
(
LeNet5
,
self
).
__init__
()
self
.
num_class
=
num_class
self
.
num_class
=
num_class
self
.
conv1
=
combined
.
Conv2d
(
self
.
conv1
=
nn
.
Conv2dBnAct
(
1
,
6
,
kernel_size
=
5
,
batchnorm
=
True
,
activation
=
'relu6'
)
1
,
6
,
kernel_size
=
5
,
batchnorm
=
True
,
activation
=
'relu6'
)
self
.
conv2
=
nn
.
Conv2dBnAct
(
6
,
16
,
kernel_size
=
5
,
activation
=
'relu'
)
self
.
conv2
=
combined
.
Conv2d
(
6
,
16
,
kernel_size
=
5
,
activation
=
'relu'
)
self
.
fc1
=
nn
.
DenseBnAct
(
16
*
5
*
5
,
120
,
activation
=
'relu'
)
self
.
fc1
=
combined
.
Dense
(
16
*
5
*
5
,
120
,
activation
=
'relu'
)
self
.
fc2
=
nn
.
DenseBnAct
(
120
,
84
,
activation
=
'relu'
)
self
.
fc2
=
combined
.
Dense
(
120
,
84
,
activation
=
'relu'
)
self
.
fc3
=
nn
.
DenseBnAct
(
84
,
self
.
num_class
)
self
.
fc3
=
combined
.
Dense
(
84
,
self
.
num_class
)
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
max_pool2d
=
nn
.
MaxPool2d
(
kernel_size
=
2
,
stride
=
2
)
self
.
flattern
=
nn
.
Flatten
()
self
.
flattern
=
nn
.
Flatten
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录