Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
47d903ff
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
47d903ff
编写于
4月 06, 2020
作者:
L
liuxiao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add pack and unpack
上级
dd9a5a38
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
229 addition
and
3 deletion
+229
-3
mindspore/ccsrc/operator/ops.h
mindspore/ccsrc/operator/ops.h
+1
-0
mindspore/ccsrc/transform/convert.cc
mindspore/ccsrc/transform/convert.cc
+4
-2
mindspore/ops/_grad/grad_array_ops.py
mindspore/ops/_grad/grad_array_ops.py
+24
-0
mindspore/ops/operations/__init__.py
mindspore/ops/operations/__init__.py
+3
-1
mindspore/ops/operations/array_ops.py
mindspore/ops/operations/array_ops.py
+144
-0
tests/ut/python/ops/test_ops.py
tests/ut/python/ops/test_ops.py
+53
-0
未找到文件。
mindspore/ccsrc/operator/ops.h
浏览文件 @
47d903ff
...
...
@@ -135,6 +135,7 @@ extern const PrimitivePtr kPrimGatherV2;
extern
const
PrimitivePtr
kPrimSize
;
extern
const
PrimitivePtr
kPrimArgMax
;
extern
const
PrimitivePtr
kPrimPack
;
extern
const
PrimitivePtr
kPrimUnpack
;
extern
const
PrimitivePtr
kPrimUnsortedSegmentSum
;
extern
const
PrimitivePtr
kPrimConcatOffset
;
extern
const
PrimitivePtr
kPrimReshape
;
...
...
mindspore/ccsrc/transform/convert.cc
浏览文件 @
47d903ff
...
...
@@ -148,7 +148,8 @@ const char kNameSlice[] = "Slice";
const
char
kNameAddN
[]
=
"AddN"
;
const
char
kNameLess
[]
=
"Less"
;
const
char
kNameGreater
[]
=
"Greater"
;
const
char
kNamePack
[]
=
"Stack"
;
const
char
kNameStack
[]
=
"Stack"
;
const
char
kNameUnstack
[]
=
"Unstack"
;
const
char
kNameMerge
[]
=
"Merge"
;
const
char
kNameGeSwitch
[]
=
"GeSwitch"
;
...
...
@@ -199,7 +200,8 @@ std::unordered_map<std::string, OpAdapterDescPtr> &DfGraphConvertor::get_adpt_ma
{
string
(
kNameMaxPool
),
ADPT_DESC
(
MaxPool
)},
{
string
(
kNameAvgPool
),
ADPT_DESC
(
AvgPool
)},
{
string
(
kNameTopK
),
ADPT_DESC
(
TopKV2
)},
{
string
(
kNamePack
),
ADPT_DESC
(
Pack
)},
{
string
(
kNameStack
),
ADPT_DESC
(
Pack
)},
{
string
(
kNameUnstack
),
ADPT_DESC
(
Unpack
)},
{
string
(
kNameSplitD
),
ADPT_DESC
(
SplitD
)},
{
string
(
kNameAllReduce
),
ADPT_DESC
(
HcomAllReduce
)},
{
string
(
kNameBroadcast
),
ADPT_DESC
(
HcomBroadcast
)},
...
...
mindspore/ops/_grad/grad_array_ops.py
浏览文件 @
47d903ff
...
...
@@ -266,6 +266,30 @@ def get_bprop_gather_v2(self):
return
bprop
@
bprop_getters
.
register
(
P
.
Stack
)
def
get_bprop_stack
(
self
):
"""Generate bprop for Stack"""
axis
=
self
.
axis
def
bprop
(
x
,
out
,
dout
):
stack_grad
=
P
.
Unstack
(
axis
)
out
=
stack_grad
(
dout
)
return
(
out
,)
return
bprop
@
bprop_getters
.
register
(
P
.
Unstack
)
def
get_bprop_unstack
(
self
):
"""Generate bprop for Unstack"""
axis
=
self
.
axis
def
bprop
(
x
,
out
,
dout
):
unstack_grad
=
P
.
Stack
(
axis
)
out
=
unstack_grad
(
dout
)
return
(
out
,)
return
bprop
@
bprop_getters
.
register
(
P
.
StridedSlice
)
def
get_bprop_strided_slice
(
self
):
"""Generate bprop for StridedSlice"""
...
...
mindspore/ops/operations/__init__.py
浏览文件 @
47d903ff
...
...
@@ -19,7 +19,7 @@ Primitive operator classes.
A collection of operators to build nerual networks or computing functions.
"""
from
.array_ops
import
(
Argmax
,
Argmin
,
Cast
,
ConcatOffset
,
Concat
,
from
.array_ops
import
(
Argmax
,
Argmin
,
Cast
,
ConcatOffset
,
Concat
,
Stack
,
Unstack
,
Diag
,
DiagPart
,
DType
,
ExpandDims
,
Eye
,
Fill
,
GatherNd
,
GatherV2
,
InvertPermutation
,
IsInstance
,
IsSubClass
,
ArgMaxWithValue
,
OnesLike
,
ZerosLike
,
...
...
@@ -112,6 +112,8 @@ __all__ = [
'OneHot'
,
'GatherV2'
,
'Concat'
,
'Stack'
,
'Unstack'
,
'Tile'
,
'BiasAdd'
,
'Gelu'
,
...
...
mindspore/ops/operations/array_ops.py
浏览文件 @
47d903ff
...
...
@@ -1350,6 +1350,150 @@ class Concat(PrimitiveWithInfer):
return
out
def
_get_stack_shape
(
x_shape
,
x_type
,
axis
):
"""for satck output shape"""
validator
.
check_type
(
"shape"
,
x_shape
,
[
tuple
])
validator
.
check_integer
(
"len of input_x shape"
,
len
(
x_shape
),
0
,
Rel
.
GT
)
validator
.
check_subclass
(
"shape0"
,
x_type
[
0
],
mstype
.
tensor
)
validator
.
check_integer
(
"len of input_x0 shape"
,
len
(
x_shape
[
0
]),
0
,
Rel
.
GT
)
rank_base
=
len
(
x_shape
[
0
])
N
=
len
(
x_shape
)
out_shape
=
x_shape
[
0
]
validator
.
check_int_range
(
'axis'
,
axis
,
-
rank_base
-
1
,
rank_base
,
Rel
.
INC_BOTH
)
if
axis
<
0
:
axis
=
axis
+
rank_base
+
1
for
i
in
range
(
1
,
N
):
v
=
x_shape
[
i
]
validator
.
check
(
'len of x_shape[%d]'
%
i
,
len
(
v
),
'len of rank_base'
,
rank_base
)
validator
.
check
(
'x_type[%d]'
%
i
,
x_type
[
i
],
'base'
,
x_type
[
0
])
for
j
in
range
(
rank_base
):
if
v
[
j
]
!=
x_shape
[
0
][
j
]:
raise
ValueError
(
"Stack evaluator element %d shape in input can not stack with first element"
%
i
)
out_shape
.
insert
(
axis
,
N
)
return
out_shape
class
Stack
(
PrimitiveWithInfer
):
r
"""
Stacks a list of rank-`R` tensors into one rank-`(R+1)` tensor.
Packs the list of tensors in `input_x` into a tensor with rank one higher than
each tensor in `input_x`, by packing them along the `axis` dimension.
Given a list of length `N` of tensors of shape `(A, B, C)`;
If `axis == 0` then the `output` tensor will have the shape `(N, A, B, C)`.
If `axis == 1` then the `output` tensor will have the shape `(A, N, B, C)`. Etc.
Args:
axis (int): The axis to stack along. Negative values wrap around,
so the valid range is [-(R+1), R+1). Default: 0.
Inputs:
- **input_x** (Union[tuple, list]) - A Tuple or list of Tensor objects with the same shape and type.
Outputs:
Tensor. A stacked Tensor with the same type as values.
Examples:
>>> data1 = Tensor(np.array([0, 1]).astype(np.float32))
>>> data2 = Tensor(np.array([2, 3]).astype(np.float32))
>>> op = P.Stack()
>>> output = op([data1, data2])
[[0, 1], [2, 3]]
"""
@
prim_attr_register
def
__init__
(
self
,
axis
=
0
):
"""init Stack"""
self
.
__setattr_flag__
=
True
validator
.
check_type
(
"axis"
,
axis
,
[
int
])
self
.
axis
=
axis
def
__infer__
(
self
,
value
):
x_shape
=
value
[
'shape'
]
x_type
=
value
[
'dtype'
]
self
.
add_prim_attr
(
'num'
,
len
(
x_shape
))
all_shape
=
_get_stack_shape
(
x_shape
,
x_type
,
self
.
axis
)
out
=
{
'shape'
:
all_shape
,
'dtype'
:
x_type
[
0
],
'value'
:
None
}
return
out
class
Unstack
(
PrimitiveWithInfer
):
r
"""
Unpacks the given dimension of a rank-`R` tensor into rank-`(R-1)` tensors.
Unpacks num tensors from value by chipping it along the axis dimension.
If num is not specified (the default), it is inferred from value's shape.
If value.shape[axis] is not known, ValueError is raised.
For example, given a tensor of shape (A, B, C, D);
If axis == 0 then the i'th tensor in output is the slice value[i, :, :, :] and
each tensor in output will have shape (B, C, D). (Note that the dimension unpacked along is gone, unlike split).
If axis == 1 then the i'th tensor in output is the slice value[:, i, :, :] and
each tensor in output will have shape (A, C, D). Etc.
This is the opposite of stack.
Args:
axis (int): The axis to unstack along. Defaults to the first dimension.
Negative values wrap around, so the valid range is [-R, R).
Inputs:
- **input_x** (Tensor) - The shape is :math:`(x_1, x_2, ..., x_R)`.
A rank R > 0 Tensor to be unstacked.
Outputs:
A tuple of Tensors, the shape of each objects is same.
Raises:
ValueError: If axis is out of the range [-len(input_x.shape()), len(input_x.shape())),
or if len(input_x.shape[axis]) not equal to num.
Examples:
>>> unstack = P.Unstack()
>>> x = Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))
>>> output = unstack(x)
([1, 1, 1, 1], [2, 2, 2, 2])
"""
@
prim_attr_register
def
__init__
(
self
,
axis
=
0
):
"""init Unstack"""
self
.
__setattr_flag__
=
True
validator
.
check_type
(
"axis"
,
axis
,
[
int
])
self
.
axis
=
axis
def
__infer__
(
self
,
x
):
validator
.
check_subclass
(
"x"
,
x
[
'dtype'
],
mstype
.
tensor
)
x_shape
=
list
(
x
[
'shape'
])
dim
=
len
(
x_shape
)
validator
.
check_int_range
(
'axis value'
,
self
.
axis
,
-
dim
,
dim
,
Rel
.
INC_LEFT
)
if
self
.
axis
<
0
:
self
.
axis
=
self
.
axis
+
dim
output_num
=
x_shape
[
self
.
axis
]
validator
.
check_type
(
"num"
,
output_num
,
[
int
])
validator
.
check_integer
(
"output_num"
,
output_num
,
0
,
Rel
.
GT
)
self
.
add_prim_attr
(
'num'
,
output_num
)
output_valid_check
=
x_shape
[
self
.
axis
]
-
output_num
validator
.
check_integer
(
"the dimension which to unstack divides output_num"
,
output_valid_check
,
0
,
Rel
.
EQ
)
out_shapes
=
[]
out_dtypes
=
[]
out_shape
=
x_shape
[:
self
.
axis
]
+
x_shape
[
self
.
axis
+
1
:]
for
_
in
range
(
output_num
):
out_shapes
.
append
(
tuple
(
out_shape
))
out_dtypes
.
append
(
x
[
'dtype'
])
out_shapes
=
tuple
(
out_shapes
)
out_dtypes
=
tuple
(
out_dtypes
)
out
=
{
'shape'
:
out_shapes
,
'dtype'
:
out_dtypes
,
'value'
:
None
}
return
out
class
Slice
(
PrimitiveWithInfer
):
"""
Slice a tensor in specified shape.
...
...
tests/ut/python/ops/test_ops.py
浏览文件 @
47d903ff
...
...
@@ -80,6 +80,29 @@ class NetForConcat1(nn.Cell):
return
self
.
concat
((
x1
,
x2
))
class
NetForStackInput
(
nn
.
Cell
):
def
__init__
(
self
,
op
):
super
(
NetForStackInput
,
self
).
__init__
()
self
.
op
=
op
self
.
mul
=
P
.
Mul
()
def
construct
(
self
,
*
args
):
t
=
()
for
i
in
range
(
len
(
args
)):
t
=
t
+
(
self
.
mul
(
args
[
i
],
args
[
i
]),)
return
self
.
op
(
t
)
class
NetForUnstackInput
(
nn
.
Cell
):
def
__init__
(
self
,
op
):
super
(
NetForUnstackInput
,
self
).
__init__
()
self
.
op
=
op
self
.
mul
=
P
.
Mul
()
def
construct
(
self
,
x1
):
return
self
.
op
((
self
.
mul
(
x1
,
x1
)))
class
NetForFlatten
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
NetForFlatten
,
self
).
__init__
()
...
...
@@ -968,6 +991,36 @@ test_case_array_ops = [
Tensor
(
np
.
array
([
1
],
np
.
float32
)),
Tensor
(
np
.
array
([
1
],
np
.
float32
)))],
'desc_bprop'
:
[[
3
,]]}),
(
'StackV2_0'
,
{
'block'
:
NetForStackInput
(
P
.
Stack
()),
'desc_inputs'
:[[
2
,
2
],
[
2
,
2
],
[
2
,
2
]],
'desc_bprop'
:[[
3
,
2
,
2
]],
}),
(
'StackV2_1'
,
{
'block'
:
NetForStackInput
(
P
.
Stack
(
axis
=-
2
)),
'desc_inputs'
:[[
3
,
2
,
3
],
[
3
,
2
,
3
],
[
3
,
2
,
3
]],
'desc_bprop'
:[[
3
,
2
,
3
,
3
]],
}),
(
'StackV2_2'
,
{
'block'
:
NetForStackInput
(
P
.
Stack
()),
'desc_inputs'
:[[
2
,
2
]],
'desc_bprop'
:[[
2
,
2
,
2
]],
}),
(
'StackV2_3'
,
{
'block'
:
NetForStackInput
(
P
.
Stack
()),
'desc_inputs'
:[[
128
,
128
],
[
128
,
128
]],
'desc_bprop'
:[[
2
,
128
,
128
]],
}),
(
'UnstackV2_0'
,
{
'block'
:
NetForUnstackInput
(
P
.
Unstack
(
axis
=
0
)),
'desc_inputs'
:[[
2
,
4
]],
'desc_bprop'
:[[
4
],
[
4
]],
}),
(
'UnstackV2_1'
,
{
'block'
:
NetForUnstackInput
(
P
.
Unstack
(
axis
=-
1
)),
'desc_inputs'
:[
Tensor
(
np
.
array
([[
1
,
1
,
1
]],
np
.
float32
))],
'desc_bprop'
:[[
1
],
[
1
],
[
1
]],
}),
(
'Diag'
,
{
'block'
:
P
.
Diag
(),
'desc_inputs'
:
[[
4
]],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录