From 3a2ddd9bb806cc1b21bef31ebd5117b17c382646 Mon Sep 17 00:00:00 2001 From: zhaoting Date: Wed, 22 Apr 2020 14:30:08 +0800 Subject: [PATCH] add README.md for YOLOv3 --- example/yolov3_coco2017/README.md | 94 +++++++++++++++++++++++++++++++ 1 file changed, 94 insertions(+) create mode 100644 example/yolov3_coco2017/README.md diff --git a/example/yolov3_coco2017/README.md b/example/yolov3_coco2017/README.md new file mode 100644 index 000000000..b35d22f4b --- /dev/null +++ b/example/yolov3_coco2017/README.md @@ -0,0 +1,94 @@ +# YOLOv3 Example + +## Description + +YOLOv3 network based on ResNet-18, with support for training and evaluation. + +## Requirements + +- Install [MindSpore](https://www.mindspore.cn/install/en). + +- Dataset + + We use coco2017 as training dataset. + + 1. Download coco2017: [train2017](http://images.cocodataset.org/zips/train2017.zip), [val2017](http://images.cocodataset.org/zips/val2017.zip), [test2017](http://images.cocodataset.org/zips/test2017.zip), [annotations](http://images.cocodataset.org/annotations/annotations_trainval2017.zip). The directory structure is as follows: + > ``` + > . + > ├── annotations # annotation jsons + > ├── train2017 # train dataset + > └── val2017 # infer dataset + > ``` + + 2. Organize the dataset infomation into a TXT file, each row in the file is as follows: + + ``` + train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2 + ``` + + Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class infomations of the format [xmin,ymin,xmax,ymax,class]. `dataset.py` is the parsing script, we read image from an image path joined by the `image_dir`(dataset directory) and the relative path in `anno_path`(the TXT file path), `image_dir` and `anno_path` are external inputs. + + +## Running the Example + +### Training + +To train the model, run `train.py` with the dataset `image_dir`, `anno_path` and `mindrecord_dir`. If the `mindrecord_dir` is empty, it wil generate [mindrecord](https://www.mindspore.cn/tutorial/en/master/use/data_preparation/converting_datasets.html) file by `image_dir` and `anno_path`(the absolute image path is joined by the `image_dir` and the relative path in `anno_path`). **Note if `mindrecord_dir` isn't empty, it will use `mindrecord_dir` rather than `image_dir` and `anno_path`.** + +- Stand alone mode + + ``` + sh run_standalone_train.sh 0 50 ./Mindrecord_train ./dataset ./dataset/train.txt + + ``` + + The input variables are device id, epoch size, mindrecord directory path, dataset directory path and train TXT file path. + + +- Distributed mode + + ``` + sh run_distribute_train.sh 8 150 /data/Mindrecord_train /data /data/train.txt /data/hccl.json + ``` + + The input variables are device numbers, epoch size, mindrecord directory path, dataset directory path, train TXT file path and [hccl json configuration file](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html). **It is better to use absolute path.** + +You will get the loss value and time of each step as following: + +``` +epoch: 145 step: 156, loss is 12.202981 +epoch time: 25599.22742843628, per step time: 164.0976117207454 +epoch: 146 step: 156, loss is 16.91706 +epoch time: 23199.971675872803, per step time: 148.7177671530308 +epoch: 147 step: 156, loss is 13.04007 +epoch time: 23801.95164680481, per step time: 152.57661312054364 +epoch: 148 step: 156, loss is 10.431475 +epoch time: 23634.241580963135, per step time: 151.50154859591754 +epoch: 149 step: 156, loss is 14.665991 +epoch time: 24118.8325881958, per step time: 154.60790120638333 +epoch: 150 step: 156, loss is 10.779521 +epoch time: 25319.57221031189, per step time: 162.30495006610187 +``` + +Note the results is two-classification(person and face) used our own annotations with coco2017, you can change `num_classes` in `config.py` to train your dataset. And we will suport 80 classifications in coco2017 the near future. + +### Evaluation + +To eval, run `eval.py` with the dataset `image_dir`, `anno_path`(eval txt), `mindrecord_dir` and `ckpt_path`. `ckpt_path` is the path of [checkpoint](https://www.mindspore.cn/tutorial/en/master/use/saving_and_loading_model_parameters.html) file. + +``` +sh run_eval.sh 0 yolo.ckpt ./Mindrecord_eval ./dataset ./dataset/eval.txt +``` + +The input variables are device id, checkpoint path, mindrecord directory path, dataset directory path and train TXT file path. + +You will get the precision and recall value of each class: + +``` +class 0 precision is 88.18%, recall is 66.00% +class 1 precision is 85.34%, recall is 79.13% +``` + +Note the precision and recall values are results of two-classification(person and face) used our own annotations with coco2017. + + -- GitLab