diff --git a/mindspore/ops/operations/array_ops.py b/mindspore/ops/operations/array_ops.py index 0e1456c250df9f223b5b76f775822272caa9905c..8e9ecfea95618fd6a771000ff9ba0be69d853845 100644 --- a/mindspore/ops/operations/array_ops.py +++ b/mindspore/ops/operations/array_ops.py @@ -986,11 +986,10 @@ class InvertPermutation(PrimitiveWithInfer): values can not be negative. Inputs: - - **input_x** (Union(tuple[int], Tensor[int])) - The input tuple is constructed by multiple + - **input_x** (Union(tuple[int]) - The input tuple is constructed by multiple integers, i.e., :math:`(y_1, y_2, ..., y_S)` representing the indices. The values must include 0. There can be no duplicate values or negative values. - If the input is Tensor, it must be 1-d and the dtype is int. Only constant value is allowed. - + Only constant value is allowed. Outputs: tuple[int]. the lenth is same as input. @@ -1014,9 +1013,7 @@ class InvertPermutation(PrimitiveWithInfer): raise ValueError(f'For \'{self.name}\' the input value must be const.') validator.check_value_type("shape", x_shp, [tuple, list], self.name) if mstype.issubclass_(x['dtype'], mstype.tensor): - validator.check('x dimension', len(x_shp), '', 1, Rel.EQ, self.name) - validator.check_tensor_type_same({'x dtype': x['dtype']}, mstype.int_type, self.name) - x_value = [int(i) for i in x_value.asnumpy()] + raise ValueError(f'For \'{self.name}\' the input value must be non-Tensor.') z = [x_value[i] for i in range(len(x_value))] z.sort()