提交 26aba3b7 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!5499 Support manual convert to quantative network of resnet

Merge pull request !5499 from chenfei_mindspore/r0.7
...@@ -252,13 +252,14 @@ def without_fold_batchnorm(weight, cell_quant): ...@@ -252,13 +252,14 @@ def without_fold_batchnorm(weight, cell_quant):
return weight, bias return weight, bias
def load_nonquant_param_into_quant_net(quant_model, params_dict): def load_nonquant_param_into_quant_net(quant_model, params_dict, quant_new_params=None):
""" """
load fp32 model parameters to quantization model. load fp32 model parameters to quantization model.
Args: Args:
quant_model: quantization model quant_model: quantization model.
params_dict: f32 param params_dict: f32 param.
quant_new_params:parameters that exist in quantative network but not in unquantative network.
Returns: Returns:
None None
...@@ -277,6 +278,8 @@ def load_nonquant_param_into_quant_net(quant_model, params_dict): ...@@ -277,6 +278,8 @@ def load_nonquant_param_into_quant_net(quant_model, params_dict):
for name, param in quant_model.parameters_and_names(): for name, param in quant_model.parameters_and_names():
key_name = name.split(".")[-1] key_name = name.split(".")[-1]
if key_name not in iterable_dict.keys(): if key_name not in iterable_dict.keys():
if quant_new_params is not None and key_name in quant_new_params:
continue
raise ValueError(f"Can't find match parameter in ckpt,param name = {name}") raise ValueError(f"Can't find match parameter in ckpt,param name = {name}")
value_param = next(iterable_dict[key_name], None) value_param = next(iterable_dict[key_name], None)
if value_param is not None: if value_param is not None:
......
...@@ -91,7 +91,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil ...@@ -91,7 +91,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
You can start training using python or shell scripts. The usage of shell scripts as follows: You can start training using python or shell scripts. The usage of shell scripts as follows:
- Ascend: sh run_train_quant.sh Ascend [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [RANK_TABLE_FILE] [DATASET_PATH] [CKPT_PATH] - Ascend: sh run_train_quant.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH] [CKPT_PATH]
### Launch ### Launch
......
...@@ -20,7 +20,8 @@ import argparse ...@@ -20,7 +20,8 @@ import argparse
from src.config import config_quant from src.config import config_quant
from src.dataset import create_dataset from src.dataset import create_dataset
from src.crossentropy import CrossEntropy from src.crossentropy import CrossEntropy
from models.resnet_quant import resnet50_quant #from models.resnet_quant import resnet50_quant #auto construct quantative network of resnet50
from models.resnet_quant_manual import resnet50_quant #manually construct quantative network of resnet50
from mindspore import context from mindspore import context
from mindspore.train.model import Model from mindspore.train.model import Model
......
...@@ -209,7 +209,7 @@ class ResNet(nn.Cell): ...@@ -209,7 +209,7 @@ class ResNet(nn.Cell):
return out return out
def resnet50_quant(class_num=10001): def resnet50_quant(class_num=10):
""" """
Get ResNet50 neural network. Get ResNet50 neural network.
......
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ResNet."""
import numpy as np
import mindspore.nn as nn
from mindspore.ops import operations as P
from mindspore import Tensor
from mindspore.nn import FakeQuantWithMinMax, Conv2dBnFoldQuant as Conv2dBatchNormQuant
_ema_decay = 0.999
_symmetric = True
_fake = True
_per_channel = True
def _weight_variable(shape, factor=0.01):
init_value = np.random.randn(*shape).astype(np.float32) * factor
return Tensor(init_value)
def _conv3x3(in_channel, out_channel, stride=1):
weight_shape = (out_channel, in_channel, 3, 3)
weight = _weight_variable(weight_shape)
return nn.Conv2d(in_channel, out_channel,
kernel_size=3, stride=stride, padding=0, pad_mode='same', weight_init=weight)
def _conv1x1(in_channel, out_channel, stride=1):
weight_shape = (out_channel, in_channel, 1, 1)
weight = _weight_variable(weight_shape)
return nn.Conv2d(in_channel, out_channel,
kernel_size=1, stride=stride, padding=0, pad_mode='same', weight_init=weight)
def _conv7x7(in_channel, out_channel, stride=1):
weight_shape = (out_channel, in_channel, 7, 7)
weight = _weight_variable(weight_shape)
return nn.Conv2d(in_channel, out_channel,
kernel_size=7, stride=stride, padding=0, pad_mode='same', weight_init=weight)
def _bn(channel):
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
gamma_init=1, beta_init=0, moving_mean_init=0, moving_var_init=1)
def _bn_last(channel):
return nn.BatchNorm2d(channel, eps=1e-4, momentum=0.9,
gamma_init=0, beta_init=0, moving_mean_init=0, moving_var_init=1)
def _fc(in_channel, out_channel):
weight_shape = (out_channel, in_channel)
weight = _weight_variable(weight_shape)
return nn.Dense(in_channel, out_channel, has_bias=True, weight_init=weight, bias_init=0)
class ConvBNReLU(nn.Cell):
"""
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
Args:
in_planes (int): Input channel.
out_planes (int): Output channel.
kernel_size (int): Input kernel size.
stride (int): Stride size for the first convolutional layer. Default: 1.
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
Returns:
Tensor, output tensor.
Examples:
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
"""
def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
super(ConvBNReLU, self).__init__()
padding = (kernel_size - 1) // 2
conv = Conv2dBatchNormQuant(in_planes, out_planes, kernel_size, stride, pad_mode='pad', padding=padding,
group=groups, fake=_fake, per_channel=_per_channel, symmetric=_symmetric)
layers = [conv, nn.ActQuant(nn.ReLU())] if _fake else [conv, nn.ReLU()]
self.features = nn.SequentialCell(layers)
def construct(self, x):
output = self.features(x)
return output
class ResidualBlock(nn.Cell):
"""
ResNet V1 residual block definition.
Args:
in_channel (int): Input channel.
out_channel (int): Output channel.
stride (int): Stride size for the first convolutional layer. Default: 1.
Returns:
Tensor, output tensor.
Examples:
>>> ResidualBlock(3, 256, stride=2)
"""
expansion = 4
def __init__(self,
in_channel,
out_channel,
stride=1):
super(ResidualBlock, self).__init__()
channel = out_channel // self.expansion
self.conv1 = ConvBNReLU(in_channel, channel, kernel_size=1, stride=1)
self.conv2 = ConvBNReLU(channel, channel, kernel_size=3, stride=stride)
self.conv3 = nn.SequentialCell([Conv2dBatchNormQuant(channel, out_channel, fake=_fake, per_channel=_per_channel,
symmetric=_symmetric,
kernel_size=1, stride=1, pad_mode='same', padding=0),
FakeQuantWithMinMax(ema=True, ema_decay=_ema_decay, symmetric=False)
]) if _fake else Conv2dBatchNormQuant(channel, out_channel, fake=_fake,
per_channel=_per_channel,
symmetric=_symmetric,
kernel_size=1, stride=1,
pad_mode='same', padding=0)
self.down_sample = False
if stride != 1 or in_channel != out_channel:
self.down_sample = True
self.down_sample_layer = None
if self.down_sample:
self.down_sample_layer = nn.SequentialCell([Conv2dBatchNormQuant(in_channel, out_channel,
per_channel=_per_channel,
symmetric=_symmetric,
kernel_size=1, stride=stride,
pad_mode='same', padding=0),
FakeQuantWithMinMax(ema=True, ema_decay=_ema_decay,
symmetric=False)
]) if _fake else Conv2dBatchNormQuant(in_channel, out_channel,
fake=_fake,
per_channel=_per_channel,
symmetric=_symmetric,
kernel_size=1,
stride=stride,
pad_mode='same',
padding=0)
self.add = nn.TensorAddQuant()
self.relu = P.ReLU()
def construct(self, x):
identity = x
out = self.conv1(x)
out = self.conv2(out)
out = self.conv3(out)
if self.down_sample:
identity = self.down_sample_layer(identity)
out = self.add(out, identity)
out = self.relu(out)
return out
class ResNet(nn.Cell):
"""
ResNet architecture.
Args:
block (Cell): Block for network.
layer_nums (list): Numbers of block in different layers.
in_channels (list): Input channel in each layer.
out_channels (list): Output channel in each layer.
strides (list): Stride size in each layer.
num_classes (int): The number of classes that the training images are belonging to.
Returns:
Tensor, output tensor.
Examples:
>>> ResNet(ResidualBlock,
>>> [3, 4, 6, 3],
>>> [64, 256, 512, 1024],
>>> [256, 512, 1024, 2048],
>>> [1, 2, 2, 2],
>>> 10)
"""
def __init__(self,
block,
layer_nums,
in_channels,
out_channels,
strides,
num_classes):
super(ResNet, self).__init__()
if not len(layer_nums) == len(in_channels) == len(out_channels) == 4:
raise ValueError("the length of layer_num, in_channels, out_channels list must be 4!")
self.conv1 = ConvBNReLU(3, 64, kernel_size=7, stride=2)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, pad_mode="same")
self.layer1 = self._make_layer(block,
layer_nums[0],
in_channel=in_channels[0],
out_channel=out_channels[0],
stride=strides[0])
self.layer2 = self._make_layer(block,
layer_nums[1],
in_channel=in_channels[1],
out_channel=out_channels[1],
stride=strides[1])
self.layer3 = self._make_layer(block,
layer_nums[2],
in_channel=in_channels[2],
out_channel=out_channels[2],
stride=strides[2])
self.layer4 = self._make_layer(block,
layer_nums[3],
in_channel=in_channels[3],
out_channel=out_channels[3],
stride=strides[3])
self.mean = P.ReduceMean(keep_dims=True)
self.flatten = nn.Flatten()
self.end_point = nn.DenseQuant(out_channels[3], num_classes, has_bias=True, per_channel=_per_channel,
symmetric=_symmetric)
self.output_fake = nn.FakeQuantWithMinMax(ema=True, ema_decay=_ema_decay)
def _make_layer(self, block, layer_num, in_channel, out_channel, stride):
"""
Make stage network of ResNet.
Args:
block (Cell): Resnet block.
layer_num (int): Layer number.
in_channel (int): Input channel.
out_channel (int): Output channel.
stride (int): Stride size for the first convolutional layer.
Returns:
SequentialCell, the output layer.
Examples:
>>> _make_layer(ResidualBlock, 3, 128, 256, 2)
"""
layers = []
resnet_block = block(in_channel, out_channel, stride=stride)
layers.append(resnet_block)
for _ in range(1, layer_num):
resnet_block = block(out_channel, out_channel, stride=1)
layers.append(resnet_block)
return nn.SequentialCell(layers)
def construct(self, x):
x = self.conv1(x)
c1 = self.maxpool(x)
c2 = self.layer1(c1)
c3 = self.layer2(c2)
c4 = self.layer3(c3)
c5 = self.layer4(c4)
out = self.mean(c5, (2, 3))
out = self.flatten(out)
out = self.end_point(out)
out = self.output_fake(out)
return out
def resnet50_quant(class_num=10):
"""
Get ResNet50 neural network.
Args:
class_num (int): Class number.
Returns:
Cell, cell instance of ResNet50 neural network.
Examples:
>>> net = resnet50_quant(10)
"""
return ResNet(ResidualBlock,
[3, 4, 6, 3],
[64, 256, 512, 1024],
[256, 512, 1024, 2048],
[1, 2, 2, 2],
class_num)
def resnet101_quant(class_num=1001):
"""
Get ResNet101 neural network.
Args:
class_num (int): Class number.
Returns:
Cell, cell instance of ResNet101 neural network.
Examples:
>>> net = resnet101(1001)
"""
return ResNet(ResidualBlock,
[3, 4, 23, 3],
[64, 256, 512, 1024],
[256, 512, 1024, 2048],
[1, 2, 2, 2],
class_num)
...@@ -31,7 +31,8 @@ from mindspore.communication.management import init ...@@ -31,7 +31,8 @@ from mindspore.communication.management import init
import mindspore.nn as nn import mindspore.nn as nn
import mindspore.common.initializer as weight_init import mindspore.common.initializer as weight_init
from models.resnet_quant import resnet50_quant #from models.resnet_quant import resnet50_quant #auto construct quantative network of resnet50
from models.resnet_quant_manual import resnet50_quant #manually construct quantative network of resnet50
from src.dataset import create_dataset from src.dataset import create_dataset
from src.lr_generator import get_lr from src.lr_generator import get_lr
from src.config import config_quant from src.config import config_quant
...@@ -85,7 +86,7 @@ if __name__ == '__main__': ...@@ -85,7 +86,7 @@ if __name__ == '__main__':
# weight init and load checkpoint file # weight init and load checkpoint file
if args_opt.pre_trained: if args_opt.pre_trained:
param_dict = load_checkpoint(args_opt.pre_trained) param_dict = load_checkpoint(args_opt.pre_trained)
load_nonquant_param_into_quant_net(net, param_dict) load_nonquant_param_into_quant_net(net, param_dict, ['step'])
epoch_size = config.epoch_size - config.pretrained_epoch_size epoch_size = config.epoch_size - config.pretrained_epoch_size
else: else:
for _, cell in net.cells_and_names(): for _, cell in net.cells_and_names():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册