Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
26aba3b7
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
26aba3b7
编写于
9月 01, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
9月 01, 2020
浏览文件
操作
浏览文件
下载
差异文件
!5499 Support manual convert to quantative network of resnet
Merge pull request !5499 from chenfei_mindspore/r0.7
上级
5120720b
298393b6
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
338 addition
and
8 deletion
+338
-8
mindspore/train/quant/quant_utils.py
mindspore/train/quant/quant_utils.py
+6
-3
model_zoo/official/cv/mobilenetv2_quant/Readme.md
model_zoo/official/cv/mobilenetv2_quant/Readme.md
+1
-1
model_zoo/official/cv/resnet50_quant/eval.py
model_zoo/official/cv/resnet50_quant/eval.py
+2
-1
model_zoo/official/cv/resnet50_quant/models/resnet_quant.py
model_zoo/official/cv/resnet50_quant/models/resnet_quant.py
+1
-1
model_zoo/official/cv/resnet50_quant/models/resnet_quant_manual.py
.../official/cv/resnet50_quant/models/resnet_quant_manual.py
+325
-0
model_zoo/official/cv/resnet50_quant/train.py
model_zoo/official/cv/resnet50_quant/train.py
+3
-2
未找到文件。
mindspore/train/quant/quant_utils.py
浏览文件 @
26aba3b7
...
@@ -252,13 +252,14 @@ def without_fold_batchnorm(weight, cell_quant):
...
@@ -252,13 +252,14 @@ def without_fold_batchnorm(weight, cell_quant):
return
weight
,
bias
return
weight
,
bias
def
load_nonquant_param_into_quant_net
(
quant_model
,
params_dict
):
def
load_nonquant_param_into_quant_net
(
quant_model
,
params_dict
,
quant_new_params
=
None
):
"""
"""
load fp32 model parameters to quantization model.
load fp32 model parameters to quantization model.
Args:
Args:
quant_model: quantization model
quant_model: quantization model.
params_dict: f32 param
params_dict: f32 param.
quant_new_params:parameters that exist in quantative network but not in unquantative network.
Returns:
Returns:
None
None
...
@@ -277,6 +278,8 @@ def load_nonquant_param_into_quant_net(quant_model, params_dict):
...
@@ -277,6 +278,8 @@ def load_nonquant_param_into_quant_net(quant_model, params_dict):
for
name
,
param
in
quant_model
.
parameters_and_names
():
for
name
,
param
in
quant_model
.
parameters_and_names
():
key_name
=
name
.
split
(
"."
)[
-
1
]
key_name
=
name
.
split
(
"."
)[
-
1
]
if
key_name
not
in
iterable_dict
.
keys
():
if
key_name
not
in
iterable_dict
.
keys
():
if
quant_new_params
is
not
None
and
key_name
in
quant_new_params
:
continue
raise
ValueError
(
f
"Can't find match parameter in ckpt,param name =
{
name
}
"
)
raise
ValueError
(
f
"Can't find match parameter in ckpt,param name =
{
name
}
"
)
value_param
=
next
(
iterable_dict
[
key_name
],
None
)
value_param
=
next
(
iterable_dict
[
key_name
],
None
)
if
value_param
is
not
None
:
if
value_param
is
not
None
:
...
...
model_zoo/official/cv/mobilenetv2_quant/Readme.md
浏览文件 @
26aba3b7
...
@@ -91,7 +91,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
...
@@ -91,7 +91,7 @@ For FP16 operators, if the input data type is FP32, the backend of MindSpore wil
You can start training using python or shell scripts. The usage of shell scripts as follows:
You can start training using python or shell scripts. The usage of shell scripts as follows:
-
Ascend: sh run_train_quant.sh Ascend [DEVICE_NUM] [
VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [RANK_TABLE_FILE
] [DATASET_PATH] [CKPT_PATH]
-
Ascend: sh run_train_quant.sh Ascend [DEVICE_NUM] [
SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)
] [DATASET_PATH] [CKPT_PATH]
### Launch
### Launch
...
...
model_zoo/official/cv/resnet50_quant/eval.py
浏览文件 @
26aba3b7
...
@@ -20,7 +20,8 @@ import argparse
...
@@ -20,7 +20,8 @@ import argparse
from
src.config
import
config_quant
from
src.config
import
config_quant
from
src.dataset
import
create_dataset
from
src.dataset
import
create_dataset
from
src.crossentropy
import
CrossEntropy
from
src.crossentropy
import
CrossEntropy
from
models.resnet_quant
import
resnet50_quant
#from models.resnet_quant import resnet50_quant #auto construct quantative network of resnet50
from
models.resnet_quant_manual
import
resnet50_quant
#manually construct quantative network of resnet50
from
mindspore
import
context
from
mindspore
import
context
from
mindspore.train.model
import
Model
from
mindspore.train.model
import
Model
...
...
model_zoo/official/cv/resnet50_quant/models/resnet_quant.py
浏览文件 @
26aba3b7
...
@@ -209,7 +209,7 @@ class ResNet(nn.Cell):
...
@@ -209,7 +209,7 @@ class ResNet(nn.Cell):
return
out
return
out
def
resnet50_quant
(
class_num
=
10
001
):
def
resnet50_quant
(
class_num
=
10
):
"""
"""
Get ResNet50 neural network.
Get ResNet50 neural network.
...
...
model_zoo/official/cv/resnet50_quant/models/resnet_quant_manual.py
0 → 100644
浏览文件 @
26aba3b7
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""ResNet."""
import
numpy
as
np
import
mindspore.nn
as
nn
from
mindspore.ops
import
operations
as
P
from
mindspore
import
Tensor
from
mindspore.nn
import
FakeQuantWithMinMax
,
Conv2dBnFoldQuant
as
Conv2dBatchNormQuant
_ema_decay
=
0.999
_symmetric
=
True
_fake
=
True
_per_channel
=
True
def
_weight_variable
(
shape
,
factor
=
0.01
):
init_value
=
np
.
random
.
randn
(
*
shape
).
astype
(
np
.
float32
)
*
factor
return
Tensor
(
init_value
)
def
_conv3x3
(
in_channel
,
out_channel
,
stride
=
1
):
weight_shape
=
(
out_channel
,
in_channel
,
3
,
3
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Conv2d
(
in_channel
,
out_channel
,
kernel_size
=
3
,
stride
=
stride
,
padding
=
0
,
pad_mode
=
'same'
,
weight_init
=
weight
)
def
_conv1x1
(
in_channel
,
out_channel
,
stride
=
1
):
weight_shape
=
(
out_channel
,
in_channel
,
1
,
1
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Conv2d
(
in_channel
,
out_channel
,
kernel_size
=
1
,
stride
=
stride
,
padding
=
0
,
pad_mode
=
'same'
,
weight_init
=
weight
)
def
_conv7x7
(
in_channel
,
out_channel
,
stride
=
1
):
weight_shape
=
(
out_channel
,
in_channel
,
7
,
7
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Conv2d
(
in_channel
,
out_channel
,
kernel_size
=
7
,
stride
=
stride
,
padding
=
0
,
pad_mode
=
'same'
,
weight_init
=
weight
)
def
_bn
(
channel
):
return
nn
.
BatchNorm2d
(
channel
,
eps
=
1e-4
,
momentum
=
0.9
,
gamma_init
=
1
,
beta_init
=
0
,
moving_mean_init
=
0
,
moving_var_init
=
1
)
def
_bn_last
(
channel
):
return
nn
.
BatchNorm2d
(
channel
,
eps
=
1e-4
,
momentum
=
0.9
,
gamma_init
=
0
,
beta_init
=
0
,
moving_mean_init
=
0
,
moving_var_init
=
1
)
def
_fc
(
in_channel
,
out_channel
):
weight_shape
=
(
out_channel
,
in_channel
)
weight
=
_weight_variable
(
weight_shape
)
return
nn
.
Dense
(
in_channel
,
out_channel
,
has_bias
=
True
,
weight_init
=
weight
,
bias_init
=
0
)
class
ConvBNReLU
(
nn
.
Cell
):
"""
Convolution/Depthwise fused with Batchnorm and ReLU block definition.
Args:
in_planes (int): Input channel.
out_planes (int): Output channel.
kernel_size (int): Input kernel size.
stride (int): Stride size for the first convolutional layer. Default: 1.
groups (int): channel group. Convolution is 1 while Depthiwse is input channel. Default: 1.
Returns:
Tensor, output tensor.
Examples:
>>> ConvBNReLU(16, 256, kernel_size=1, stride=1, groups=1)
"""
def
__init__
(
self
,
in_planes
,
out_planes
,
kernel_size
=
3
,
stride
=
1
,
groups
=
1
):
super
(
ConvBNReLU
,
self
).
__init__
()
padding
=
(
kernel_size
-
1
)
//
2
conv
=
Conv2dBatchNormQuant
(
in_planes
,
out_planes
,
kernel_size
,
stride
,
pad_mode
=
'pad'
,
padding
=
padding
,
group
=
groups
,
fake
=
_fake
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
)
layers
=
[
conv
,
nn
.
ActQuant
(
nn
.
ReLU
())]
if
_fake
else
[
conv
,
nn
.
ReLU
()]
self
.
features
=
nn
.
SequentialCell
(
layers
)
def
construct
(
self
,
x
):
output
=
self
.
features
(
x
)
return
output
class
ResidualBlock
(
nn
.
Cell
):
"""
ResNet V1 residual block definition.
Args:
in_channel (int): Input channel.
out_channel (int): Output channel.
stride (int): Stride size for the first convolutional layer. Default: 1.
Returns:
Tensor, output tensor.
Examples:
>>> ResidualBlock(3, 256, stride=2)
"""
expansion
=
4
def
__init__
(
self
,
in_channel
,
out_channel
,
stride
=
1
):
super
(
ResidualBlock
,
self
).
__init__
()
channel
=
out_channel
//
self
.
expansion
self
.
conv1
=
ConvBNReLU
(
in_channel
,
channel
,
kernel_size
=
1
,
stride
=
1
)
self
.
conv2
=
ConvBNReLU
(
channel
,
channel
,
kernel_size
=
3
,
stride
=
stride
)
self
.
conv3
=
nn
.
SequentialCell
([
Conv2dBatchNormQuant
(
channel
,
out_channel
,
fake
=
_fake
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
,
kernel_size
=
1
,
stride
=
1
,
pad_mode
=
'same'
,
padding
=
0
),
FakeQuantWithMinMax
(
ema
=
True
,
ema_decay
=
_ema_decay
,
symmetric
=
False
)
])
if
_fake
else
Conv2dBatchNormQuant
(
channel
,
out_channel
,
fake
=
_fake
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
,
kernel_size
=
1
,
stride
=
1
,
pad_mode
=
'same'
,
padding
=
0
)
self
.
down_sample
=
False
if
stride
!=
1
or
in_channel
!=
out_channel
:
self
.
down_sample
=
True
self
.
down_sample_layer
=
None
if
self
.
down_sample
:
self
.
down_sample_layer
=
nn
.
SequentialCell
([
Conv2dBatchNormQuant
(
in_channel
,
out_channel
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
,
kernel_size
=
1
,
stride
=
stride
,
pad_mode
=
'same'
,
padding
=
0
),
FakeQuantWithMinMax
(
ema
=
True
,
ema_decay
=
_ema_decay
,
symmetric
=
False
)
])
if
_fake
else
Conv2dBatchNormQuant
(
in_channel
,
out_channel
,
fake
=
_fake
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
,
kernel_size
=
1
,
stride
=
stride
,
pad_mode
=
'same'
,
padding
=
0
)
self
.
add
=
nn
.
TensorAddQuant
()
self
.
relu
=
P
.
ReLU
()
def
construct
(
self
,
x
):
identity
=
x
out
=
self
.
conv1
(
x
)
out
=
self
.
conv2
(
out
)
out
=
self
.
conv3
(
out
)
if
self
.
down_sample
:
identity
=
self
.
down_sample_layer
(
identity
)
out
=
self
.
add
(
out
,
identity
)
out
=
self
.
relu
(
out
)
return
out
class
ResNet
(
nn
.
Cell
):
"""
ResNet architecture.
Args:
block (Cell): Block for network.
layer_nums (list): Numbers of block in different layers.
in_channels (list): Input channel in each layer.
out_channels (list): Output channel in each layer.
strides (list): Stride size in each layer.
num_classes (int): The number of classes that the training images are belonging to.
Returns:
Tensor, output tensor.
Examples:
>>> ResNet(ResidualBlock,
>>> [3, 4, 6, 3],
>>> [64, 256, 512, 1024],
>>> [256, 512, 1024, 2048],
>>> [1, 2, 2, 2],
>>> 10)
"""
def
__init__
(
self
,
block
,
layer_nums
,
in_channels
,
out_channels
,
strides
,
num_classes
):
super
(
ResNet
,
self
).
__init__
()
if
not
len
(
layer_nums
)
==
len
(
in_channels
)
==
len
(
out_channels
)
==
4
:
raise
ValueError
(
"the length of layer_num, in_channels, out_channels list must be 4!"
)
self
.
conv1
=
ConvBNReLU
(
3
,
64
,
kernel_size
=
7
,
stride
=
2
)
self
.
maxpool
=
nn
.
MaxPool2d
(
kernel_size
=
3
,
stride
=
2
,
pad_mode
=
"same"
)
self
.
layer1
=
self
.
_make_layer
(
block
,
layer_nums
[
0
],
in_channel
=
in_channels
[
0
],
out_channel
=
out_channels
[
0
],
stride
=
strides
[
0
])
self
.
layer2
=
self
.
_make_layer
(
block
,
layer_nums
[
1
],
in_channel
=
in_channels
[
1
],
out_channel
=
out_channels
[
1
],
stride
=
strides
[
1
])
self
.
layer3
=
self
.
_make_layer
(
block
,
layer_nums
[
2
],
in_channel
=
in_channels
[
2
],
out_channel
=
out_channels
[
2
],
stride
=
strides
[
2
])
self
.
layer4
=
self
.
_make_layer
(
block
,
layer_nums
[
3
],
in_channel
=
in_channels
[
3
],
out_channel
=
out_channels
[
3
],
stride
=
strides
[
3
])
self
.
mean
=
P
.
ReduceMean
(
keep_dims
=
True
)
self
.
flatten
=
nn
.
Flatten
()
self
.
end_point
=
nn
.
DenseQuant
(
out_channels
[
3
],
num_classes
,
has_bias
=
True
,
per_channel
=
_per_channel
,
symmetric
=
_symmetric
)
self
.
output_fake
=
nn
.
FakeQuantWithMinMax
(
ema
=
True
,
ema_decay
=
_ema_decay
)
def
_make_layer
(
self
,
block
,
layer_num
,
in_channel
,
out_channel
,
stride
):
"""
Make stage network of ResNet.
Args:
block (Cell): Resnet block.
layer_num (int): Layer number.
in_channel (int): Input channel.
out_channel (int): Output channel.
stride (int): Stride size for the first convolutional layer.
Returns:
SequentialCell, the output layer.
Examples:
>>> _make_layer(ResidualBlock, 3, 128, 256, 2)
"""
layers
=
[]
resnet_block
=
block
(
in_channel
,
out_channel
,
stride
=
stride
)
layers
.
append
(
resnet_block
)
for
_
in
range
(
1
,
layer_num
):
resnet_block
=
block
(
out_channel
,
out_channel
,
stride
=
1
)
layers
.
append
(
resnet_block
)
return
nn
.
SequentialCell
(
layers
)
def
construct
(
self
,
x
):
x
=
self
.
conv1
(
x
)
c1
=
self
.
maxpool
(
x
)
c2
=
self
.
layer1
(
c1
)
c3
=
self
.
layer2
(
c2
)
c4
=
self
.
layer3
(
c3
)
c5
=
self
.
layer4
(
c4
)
out
=
self
.
mean
(
c5
,
(
2
,
3
))
out
=
self
.
flatten
(
out
)
out
=
self
.
end_point
(
out
)
out
=
self
.
output_fake
(
out
)
return
out
def
resnet50_quant
(
class_num
=
10
):
"""
Get ResNet50 neural network.
Args:
class_num (int): Class number.
Returns:
Cell, cell instance of ResNet50 neural network.
Examples:
>>> net = resnet50_quant(10)
"""
return
ResNet
(
ResidualBlock
,
[
3
,
4
,
6
,
3
],
[
64
,
256
,
512
,
1024
],
[
256
,
512
,
1024
,
2048
],
[
1
,
2
,
2
,
2
],
class_num
)
def
resnet101_quant
(
class_num
=
1001
):
"""
Get ResNet101 neural network.
Args:
class_num (int): Class number.
Returns:
Cell, cell instance of ResNet101 neural network.
Examples:
>>> net = resnet101(1001)
"""
return
ResNet
(
ResidualBlock
,
[
3
,
4
,
23
,
3
],
[
64
,
256
,
512
,
1024
],
[
256
,
512
,
1024
,
2048
],
[
1
,
2
,
2
,
2
],
class_num
)
model_zoo/official/cv/resnet50_quant/train.py
浏览文件 @
26aba3b7
...
@@ -31,7 +31,8 @@ from mindspore.communication.management import init
...
@@ -31,7 +31,8 @@ from mindspore.communication.management import init
import
mindspore.nn
as
nn
import
mindspore.nn
as
nn
import
mindspore.common.initializer
as
weight_init
import
mindspore.common.initializer
as
weight_init
from
models.resnet_quant
import
resnet50_quant
#from models.resnet_quant import resnet50_quant #auto construct quantative network of resnet50
from
models.resnet_quant_manual
import
resnet50_quant
#manually construct quantative network of resnet50
from
src.dataset
import
create_dataset
from
src.dataset
import
create_dataset
from
src.lr_generator
import
get_lr
from
src.lr_generator
import
get_lr
from
src.config
import
config_quant
from
src.config
import
config_quant
...
@@ -85,7 +86,7 @@ if __name__ == '__main__':
...
@@ -85,7 +86,7 @@ if __name__ == '__main__':
# weight init and load checkpoint file
# weight init and load checkpoint file
if
args_opt
.
pre_trained
:
if
args_opt
.
pre_trained
:
param_dict
=
load_checkpoint
(
args_opt
.
pre_trained
)
param_dict
=
load_checkpoint
(
args_opt
.
pre_trained
)
load_nonquant_param_into_quant_net
(
net
,
param_dict
)
load_nonquant_param_into_quant_net
(
net
,
param_dict
,
[
'step'
]
)
epoch_size
=
config
.
epoch_size
-
config
.
pretrained_epoch_size
epoch_size
=
config
.
epoch_size
-
config
.
pretrained_epoch_size
else
:
else
:
for
_
,
cell
in
net
.
cells_and_names
():
for
_
,
cell
in
net
.
cells_and_names
():
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录