提交 2215e326 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!1419 remove old buffer fusion pass

Merge pull request !1419 from Etone.Chan/Resnet50
......@@ -62,7 +62,6 @@
#include "pre_activate/pass/common_subexpression_elimination.h"
#include "pre_activate/ascend/format_type/merge_cast_to_op.h"
#include "pre_activate/ascend/format_type/check_consistency.h"
#include "pre_activate/ascend/buffer_fusion/buffer_fusion.h"
#include "pre_activate/ascend/buffer_fusion/ub_pattern_fusion.h"
#include "pre_activate/ascend/buffer_fusion/eltwise_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/conv2dbackprop_eltwise_eltwise_fusion_pass.h"
......@@ -317,14 +316,14 @@ void AscendBackendOptimization(const std::shared_ptr<session::KernelGraph> &kern
optimizer->AddPassManager(other_pm);
(void)optimizer->Optimize(kernel_graph);
kernel_graph->SetExecOrderByDefault();
// buffer fusion
AscendBackendUBFusionOptimization(kernel_graph);
if (save_graphs) {
std::string file_path =
save_graphs_path + "/" + "hwopt_d_end" + "_graph_" + std::to_string(kernel_graph->graph_id()) + ".ir";
DumpIR(file_path, kernel_graph, true);
DumpIRProto(kernel_graph, "after_hwopt_" + std::to_string(kernel_graph->graph_id()));
}
// buffer fusion
AscendBackendUBFusionOptimization(kernel_graph);
}
void AscendBackendUBFusionOptimization(const std::shared_ptr<session::KernelGraph> &kernel_graph) {
......
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/ascend/buffer_fusion/buffer_fusion.h"
#include <vector>
#include <tuple>
#include <utility>
#include <unordered_set>
#include <unordered_map>
#include <deque>
#include <memory>
#include <string>
#include <algorithm>
#include <iterator>
#include "kernel/kernel_fusion.h"
#include "debug/anf_ir_dump.h"
#include "session/anf_runtime_algorithm.h"
#include "operator/ops.h"
#include "device/kernel_info.h"
#include "utils/context/ms_context.h"
#include "pre_activate/common/fusion_id_allocator.h"
namespace mindspore {
namespace opt {
namespace {
const int8_t MAX_PATTERN_SIZE = 7;
const int8_t MIN_PATTERN_SIZE = 2;
const int8_t ELTWISE_INPUT_SIZE = 2;
const int8_t ELTWISE_USE = 1;
const int8_t MULTI_ELTWISE_USE = 2;
const int8_t MAX_MULTI_ELTWISE_SIZE = 4;
const int8_t MAX_PURE_BUFFER_SUCC_SIZE = 3;
constexpr auto kOpAttrFusionId = "fusion_id";
#ifdef DEBUG
std::string GetFusionTypeName(const kernel::FusionType &type) {
switch (type) {
case kernel::FusionType::COMMREDUCE:
return "COMMREDUCE";
case kernel::FusionType::SEGMENT:
return "SEGMENT";
case kernel::FusionType::ELEMWISE:
return "ELEMWISE";
case kernel::FusionType::CONVLUTION:
return "CONVLUTION";
case kernel::FusionType::OPAQUE:
return "OPAQUE";
default:
return "OPAQUE";
}
}
void DumpFusionScopeInfo(const kernel::FusionScopeInfo &info) {
MS_LOG(INFO) << "=== Dump FusionScopeInfo start id: " << info.scope_id;
for (auto &node : info.input_nodes) {
MS_LOG(INFO) << "=== Input: " << node->DebugString();
}
for (auto &node : info.output_nodes) {
MS_LOG(INFO) << "=== Output: " << node->DebugString();
}
for (auto &node : info.compute_nodes) {
MS_LOG(INFO) << "=== Compute: (" << node->DebugString() << ")-(" << GetFusionTypeName(AnfAlgo::GetFusionType(node))
<< ")";
}
MS_LOG(INFO) << "=== Dump FusionScopeInfo end";
}
#endif
bool CheckEltWiseNode(FuncGraphManager *manager, std::unordered_set<AnfNodePtr> *record, const CNodePtr &node) {
MS_EXCEPTION_IF_NULL(manager);
MS_EXCEPTION_IF_NULL(record);
auto user_nodes = manager->node_users()[node];
return (AnfAlgo::GetKernelType(node) == KernelType::TBE_KERNEL &&
AnfAlgo::GetFusionType(node) == kernel::FusionType::ELEMWISE &&
(user_nodes.size() <= ELTWISE_USE || record->size() == 0));
}
// Common method to check for predecessors and successors in a fusion pattern
std::tuple<bool, CNodePtr> FindPredAndSuccEltWiseNodes(const int8_t &max_size, FuncGraphManager *manager,
std::unordered_set<AnfNodePtr> *visited_set,
std::deque<AnfNodePtr> *todo,
std::unordered_set<AnfNodePtr> *record, const CNodePtr &node) {
MS_EXCEPTION_IF_NULL(manager);
MS_EXCEPTION_IF_NULL(visited_set);
MS_EXCEPTION_IF_NULL(todo);
MS_EXCEPTION_IF_NULL(record);
MS_EXCEPTION_IF_NULL(node);
CNodePtr new_node = node;
if (new_node->inputs().size() < ELTWISE_INPUT_SIZE) {
return std::make_tuple(false, new_node);
}
int8_t index = 1;
auto &users = manager->node_users();
while (CheckEltWiseNode(manager, record, new_node)) {
(void)record->insert(new_node);
(void)visited_set->insert(new_node);
(void)todo->insert(todo->end(), new_node->inputs().begin() + 1, new_node->inputs().end());
auto cnode = new_node->input(1);
MS_EXCEPTION_IF_NULL(cnode);
if (!cnode->isa<CNode>()) {
return std::make_tuple(false, new_node);
}
new_node = cnode->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(new_node);
if (!AnfAlgo::IsRealKernel(new_node) || new_node->inputs().size() < ELTWISE_INPUT_SIZE ||
users[(new_node)].size() >= MULTI_ELTWISE_USE || visited_set->find(new_node) != visited_set->end()) {
return std::make_tuple(false, new_node);
}
if (index >= max_size) {
break;
}
index++;
}
return std::make_tuple(true, new_node);
}
std::tuple<bool, CNodePtr> MatchGeneralPattern(FuncGraphManager *manager, std::unordered_set<AnfNodePtr> *record,
std::unordered_set<AnfNodePtr> *visited_set,
std::deque<AnfNodePtr> *todo, const CNodePtr &node) {
MS_EXCEPTION_IF_NULL(manager);
MS_EXCEPTION_IF_NULL(record);
MS_EXCEPTION_IF_NULL(visited_set);
MS_EXCEPTION_IF_NULL(node);
MS_EXCEPTION_IF_NULL(todo);
CNodePtr new_node = node;
auto &users = manager->node_users();
if (users[(new_node)].size() >= MULTI_ELTWISE_USE) {
return std::make_tuple(false, new_node);
}
(void)record->insert(node);
(void)visited_set->insert(node);
(void)todo->insert(todo->end(), new_node->inputs().begin() + 1, new_node->inputs().end());
if (node->inputs().size() < 2) {
return std::make_tuple(false, new_node);
}
// only check the first real input, will check all
auto cnode = node->input(1);
MS_EXCEPTION_IF_NULL(cnode);
if (!cnode->isa<CNode>()) {
return std::make_tuple(false, new_node);
}
new_node = cnode->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(new_node);
if (!AnfAlgo::IsRealKernel(new_node) || users[(new_node)].size() >= MULTI_ELTWISE_USE ||
visited_set->find(new_node) != visited_set->end()) {
return std::make_tuple(false, new_node);
}
return std::make_tuple(true, new_node);
}
CNodePtr FindFusionAnfNode(FuncGraphManager *manager, std::unordered_set<AnfNodePtr> *visited_set,
std::unordered_set<AnfNodePtr> *record, std::deque<AnfNodePtr> *todo, const CNodePtr &node) {
MS_EXCEPTION_IF_NULL(manager);
MS_EXCEPTION_IF_NULL(visited_set);
MS_EXCEPTION_IF_NULL(record);
MS_EXCEPTION_IF_NULL(node);
MS_EXCEPTION_IF_NULL(todo);
// find fusion pattern predecessor nodes
auto ret = FindPredAndSuccEltWiseNodes(MAX_MULTI_ELTWISE_SIZE, manager, visited_set, todo, record, node);
auto new_node = std::get<1>(ret);
auto node_use_size = manager->node_users()[new_node].size();
if (!std::get<0>(ret) || (record->size() > 1 && node_use_size > 1) || record->size() >= MAX_MULTI_ELTWISE_SIZE ||
AnfAlgo::GetKernelType(new_node) != KernelType::TBE_KERNEL) {
return new_node;
}
// key of fusion precessor
auto node_fusion_type = AnfAlgo::GetFusionType(new_node);
switch (node_fusion_type) {
case kernel::FusionType::COMMREDUCE:
case kernel::FusionType::SEGMENT:
ret = MatchGeneralPattern(manager, record, visited_set, todo, new_node);
new_node = std::get<1>(ret);
if (!std::get<0>(ret)) {
return new_node;
}
break;
case kernel::FusionType::ELEMWISE:
return new_node;
// -fallthrough to default and return
case kernel::FusionType::CONVLUTION:
(void)record->insert(new_node);
default:
(void)visited_set->insert(new_node);
if (new_node != nullptr) {
(void)todo->insert(todo->end(), new_node->inputs().begin() + 1, new_node->inputs().end());
}
return new_node;
}
// find fusion pattern successor nodes
ret = FindPredAndSuccEltWiseNodes(MAX_PURE_BUFFER_SUCC_SIZE, manager, visited_set, todo, record, new_node);
return std::get<1>(ret);
}
CNodePtr CreateFusionOp(const std::vector<AnfNodePtr> &inputs_list, const std::vector<AnfNodePtr> &outputs_list,
const std::vector<AnfNodePtr> &anf_nodes, session::KernelGraph *kernel_graph) {
MS_LOG(DEBUG) << "Start Create FusionOp Kernel";
MS_EXCEPTION_IF_NULL(kernel_graph);
std::string fusion_op_name = "FusionOp";
for (auto node : anf_nodes) {
fusion_op_name += '_' + AnfAlgo::GetCNodeName(node);
}
auto fusion_op = std::make_shared<Primitive>(fusion_op_name);
MS_EXCEPTION_IF_NULL(fusion_op);
std::vector<std::string> input_names;
for (uint8_t i = 0; i < inputs_list.size(); i++) {
input_names.emplace_back("input" + std::to_string(i));
}
std::vector<std::string> output_names;
for (uint8_t i = 0; i < outputs_list.size(); i++) {
output_names.emplace_back("output" + std::to_string(i));
}
ValuePtr input_names_v = MakeValue(input_names);
ValuePtr output_names_v = MakeValue(output_names);
fusion_op->set_attr("input_names", input_names_v);
fusion_op->set_attr("output_names", output_names_v);
std::vector<AnfNodePtr> fusion_inputs_list = inputs_list;
auto value_node = std::make_shared<ValueNode>(fusion_op);
(void)fusion_inputs_list.insert(fusion_inputs_list.begin(), value_node);
auto buffer_fusion_kernel = kernel_graph->NewCNode(fusion_inputs_list);
if (buffer_fusion_kernel == nullptr) {
MS_LOG(EXCEPTION) << "New FusionOp kernel failed!";
}
buffer_fusion_kernel->set_scope((anf_nodes.back())->scope());
return buffer_fusion_kernel;
}
kernel::KernelBuildInfoPtr CreateFusionOpKernelInfo(const std::vector<AnfNodePtr> &inputs_list,
const std::vector<AnfNodePtr> &outputs_list) {
MS_LOG(DEBUG) << "Start Create Kernel Info";
kernel::KernelBuildInfo::KernelBuildInfoBuilder builder;
// inputs format and data type
std::vector<std::string> inputs_format;
std::vector<TypeId> inputs_data_type;
for (const auto &input : inputs_list) {
auto real_input = AnfAlgo::VisitKernel(input, 0);
inputs_format.push_back(AnfAlgo::GetOutputFormat(real_input.first, real_input.second));
inputs_data_type.push_back(AnfAlgo::GetOutputDeviceDataType(real_input.first, real_input.second));
}
// outputs format and data type
std::vector<std::string> outputs_format;
std::vector<TypeId> outputs_data_type;
for (const auto &output : outputs_list) {
if (AnfAlgo::GetCNodeName(output) == prim::kPrimTupleGetItem->name()) {
auto tuple_getitem = output->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(tuple_getitem);
outputs_format.push_back(AnfAlgo::GetOutputFormat(
tuple_getitem->input(1), IntToSize(GetValue<int>(GetValueNode(tuple_getitem->input(2))))));
outputs_data_type.push_back(AnfAlgo::GetOutputDeviceDataType(
tuple_getitem->input(1), IntToSize(GetValue<int>(GetValueNode(tuple_getitem->input(2))))));
} else {
outputs_format.push_back(AnfAlgo::GetOutputFormat(output, 0));
outputs_data_type.push_back(AnfAlgo::GetOutputDeviceDataType(output, 0));
}
}
builder.SetInputsFormat(inputs_format);
builder.SetInputsDeviceType(inputs_data_type);
builder.SetOutputsFormat(outputs_format);
builder.SetOutputsDeviceType(outputs_data_type);
builder.SetKernelType(KernelType::TBE_KERNEL);
return builder.Build();
}
AnfNodePtr CreateTupleGetItem(const AnfNodePtr &buffer_fusion_kernel, session::KernelGraph *kernel_graph,
size_t output_index) {
MS_EXCEPTION_IF_NULL(kernel_graph);
std::vector<AnfNodePtr> tuple_getitem_inputs_list;
auto value = std::make_shared<ValueNode>(prim::kPrimTupleGetItem);
MS_EXCEPTION_IF_NULL(value);
auto idx = NewValueNode(SizeToInt(output_index));
MS_EXCEPTION_IF_NULL(idx);
int temp = SizeToInt(output_index);
auto imm = std::make_shared<Int32Imm>(temp);
auto abstract_scalar = std::make_shared<abstract::AbstractScalar>(imm);
idx->set_abstract(abstract_scalar);
tuple_getitem_inputs_list.push_back(value);
tuple_getitem_inputs_list.push_back(buffer_fusion_kernel);
tuple_getitem_inputs_list.push_back(idx);
auto tuple_item = kernel_graph->NewCNode(tuple_getitem_inputs_list);
MS_EXCEPTION_IF_NULL(tuple_item);
AnfAlgo::SetOutputInferTypeAndShape({AnfAlgo::GetOutputInferDataType(buffer_fusion_kernel, output_index)},
{AnfAlgo::GetOutputInferShape(buffer_fusion_kernel, output_index)},
tuple_item.get());
return tuple_item;
}
void ReplaceInputNodeInOtherFusionScope(std::unordered_map<int32_t, BufferFusionInfo_t> *buffer_fusion_infos,
int32_t fusion_id, const AnfNodePtr &output_item,
const AnfNodePtr &replace_item) {
for (int32_t id = fusion_id + 1; id <= SizeToInt(buffer_fusion_infos->size()); ++id) {
auto itr = std::find((*buffer_fusion_infos)[id].inputs_list.begin(), (*buffer_fusion_infos)[id].inputs_list.end(),
output_item);
if (itr != (*buffer_fusion_infos)[id].inputs_list.end()) {
MS_LOG(DEBUG) << "replace input of other pattern, id = " << id;
*itr = replace_item;
}
}
}
void ReplaceOldNode(std::unordered_map<int32_t, BufferFusionInfo_t> *buffer_fusion_infos, int32_t fusion_id,
const AnfNodePtr &buffer_fusion_kernel, session::KernelGraph *kernel_graph) {
MS_EXCEPTION_IF_NULL(kernel_graph);
auto manager = kernel_graph->manager();
MS_EXCEPTION_IF_NULL(manager);
auto buffer_fusion_info = (*buffer_fusion_infos)[fusion_id];
if (buffer_fusion_info.outputs_list.size() == 1) { // single output
(void)manager->Replace(buffer_fusion_info.outputs_list[0], buffer_fusion_kernel);
ReplaceInputNodeInOtherFusionScope(buffer_fusion_infos, fusion_id, buffer_fusion_info.outputs_list[0],
buffer_fusion_kernel);
} else { // multiple output
for (size_t index = 0; index < buffer_fusion_info.outputs_list.size(); ++index) {
auto tuple_item = CreateTupleGetItem(buffer_fusion_kernel, kernel_graph, index);
(void)manager->Replace(buffer_fusion_info.outputs_list[index], tuple_item);
ReplaceInputNodeInOtherFusionScope(buffer_fusion_infos, fusion_id, buffer_fusion_info.outputs_list[index],
tuple_item);
}
}
}
void GetFusionScopeComputeNodeList(session::KernelGraph *kernel_graph,
std::unordered_map<int32_t, BufferFusionInfo_t> *buffer_fusion_infos) {
MS_EXCEPTION_IF_NULL(buffer_fusion_infos);
auto nodes = TopoSort(kernel_graph->get_return());
for (auto &node : nodes) {
MS_EXCEPTION_IF_NULL(node);
if (!node->isa<CNode>()) {
continue;
}
auto cnode = node->cast<CNodePtr>();
if (AnfAlgo::IsRealCNodeKernel(cnode) && AnfAlgo::HasNodeAttr(kOpAttrFusionId, cnode)) {
auto fusion_id = AnfAlgo::GetNodeAttr<int32_t>(cnode, kOpAttrFusionId);
(*buffer_fusion_infos)[fusion_id].anf_nodes.push_back(cnode);
}
}
}
void GetFusionScopeInputNodeList(const session::KernelGraph &kernel_graph,
std::unordered_map<int32_t, BufferFusionInfo_t> *buffer_fusion_infos) {
MS_EXCEPTION_IF_NULL(buffer_fusion_infos);
auto manager = kernel_graph.manager();
MS_EXCEPTION_IF_NULL(manager);
for (auto &buffer_fusion_info : *buffer_fusion_infos) {
auto fusion_id = buffer_fusion_info.first;
auto fusion_info = buffer_fusion_info.second;
for (const auto &node : fusion_info.anf_nodes) {
auto cnode = node->cast<CNodePtr>();
for (size_t idx = 1; idx < cnode->inputs().size(); ++idx) {
auto real_input = AnfAlgo::VisitKernel(cnode->input(idx), 0);
if (std::find(fusion_info.anf_nodes.begin(), fusion_info.anf_nodes.end(), real_input.first) ==
fusion_info.anf_nodes.end()) {
if (std::find((*buffer_fusion_infos)[fusion_id].inputs_list.begin(),
(*buffer_fusion_infos)[fusion_id].inputs_list.end(),
cnode->input(idx)) == (*buffer_fusion_infos)[fusion_id].inputs_list.end()) {
(*buffer_fusion_infos)[fusion_id].inputs_list.push_back(cnode->input(idx));
}
}
}
}
}
}
bool TupleGetitemNodeCompare(const AnfNodePtr &node1, const AnfNodePtr &node2) {
MS_EXCEPTION_IF_NULL(node1);
MS_EXCEPTION_IF_NULL(node2);
auto getitem1 = node1->cast<CNodePtr>();
auto getitem2 = node2->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(getitem1);
MS_EXCEPTION_IF_NULL(getitem2);
auto output_idx1 = GetValue<int>(GetValueNode(getitem1->input(2)));
auto output_idx2 = GetValue<int>(GetValueNode(getitem2->input(2)));
return output_idx1 < output_idx2;
}
void GetFusionScopeOutputNodeList(session::KernelGraph *kernel_graph,
std::unordered_map<int32_t, BufferFusionInfo_t> *buffer_fusion_infos) {
MS_EXCEPTION_IF_NULL(kernel_graph);
MS_EXCEPTION_IF_NULL(buffer_fusion_infos);
auto manager = kernel_graph->manager();
MS_EXCEPTION_IF_NULL(manager);
for (auto &buffer_fusion_info : *buffer_fusion_infos) {
auto fusion_id = buffer_fusion_info.first;
auto fusion_info = buffer_fusion_info.second;
for (const auto &node : fusion_info.anf_nodes) {
if (AnfAlgo::GetOutputTensorNum(node) == 1) {
for (auto use_node : manager->node_users()[node]) {
if (std::find(fusion_info.anf_nodes.begin(), fusion_info.anf_nodes.end(), use_node.first) ==
fusion_info.anf_nodes.end()) {
(*buffer_fusion_infos)[fusion_id].outputs_list.push_back(node);
break;
}
}
} else {
int prev_idx = 0;
std::vector<AnfNodePtr> tuple_getitem_nodes;
std::transform(manager->node_users()[node].begin(), manager->node_users()[node].end(),
std::back_inserter(tuple_getitem_nodes),
[](const std::pair<AnfNodePtr, int> &use_node) { return use_node.first; });
std::sort(tuple_getitem_nodes.begin(), tuple_getitem_nodes.end(), TupleGetitemNodeCompare);
for (auto getitem : tuple_getitem_nodes) {
auto getitem_ptr = getitem->cast<CNodePtr>();
auto input2 = getitem_ptr->input(2);
auto output_idx = GetValue<int>(GetValueNode(input2));
for (int stub_idx = prev_idx; stub_idx < output_idx; ++stub_idx) {
auto stub_node = CreateTupleGetItem(node, kernel_graph, IntToSize(stub_idx));
(*buffer_fusion_infos)[fusion_id].outputs_list.push_back(stub_node);
}
prev_idx = output_idx + 1;
for (auto item_use_node : manager->node_users()[getitem]) {
if (std::find(fusion_info.anf_nodes.begin(), fusion_info.anf_nodes.end(), item_use_node.first) ==
fusion_info.anf_nodes.end()) {
(*buffer_fusion_infos)[fusion_id].outputs_list.push_back(getitem);
break;
}
}
}
}
}
}
}
void SetFusionOpRefInfos(session::KernelGraph *kernel_graph, const std::vector<AnfNodePtr> &outputs_list,
const AnfNodePtr &fusion_kernel) {
MS_EXCEPTION_IF_NULL(kernel_graph);
auto manager = kernel_graph->manager();
MS_EXCEPTION_IF_NULL(manager);
for (size_t idx = 0; idx < outputs_list.size(); ++idx) {
auto output = outputs_list[idx];
if (output->isa<CNode>() && AnfAlgo::GetCNodeName(output) == prim::kPrimTupleGetItem->name()) {
auto real_output = AnfAlgo::VisitKernel(output, 0);
auto output_cnode = output->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(output_cnode);
auto input2 = output_cnode->input(2);
auto output_idx = GetValue<int>(GetValueNode(input2));
session::AnfWithOutIndex out_pair(real_output.first, output_idx);
if (kernel_graph->IsInRefOutputMap(out_pair)) {
auto origin_pair = kernel_graph->GetRefCorrespondOutput(out_pair);
session::AnfWithOutIndex fusion_final_pair(fusion_kernel, idx);
kernel_graph->AddRefCorrespondPairs(fusion_final_pair, origin_pair);
}
} else {
session::AnfWithOutIndex out_pair(output, 0);
if (kernel_graph->IsInRefOutputMap(out_pair)) {
auto origin_pair = kernel_graph->GetRefCorrespondOutput(out_pair);
session::AnfWithOutIndex fusion_final_pair(fusion_kernel, idx);
kernel_graph->AddRefCorrespondPairs(fusion_final_pair, origin_pair);
}
}
}
}
} // namespace
void BufferFusion::SetRecordFusionId(const std::unordered_set<AnfNodePtr> &record) {
auto id = fusion_id_allocator.AllocateFusionId();
for (auto node : record) {
fusion_id_allocator.SetFusionId(node, id);
}
}
void BufferFusion::MatchConvBnreduce(const CNodePtr &cnode, const session::KernelGraph &kernel_graph,
FusedNodeRecord *candidate_fusion) {
MS_EXCEPTION_IF_NULL(cnode);
MS_EXCEPTION_IF_NULL(candidate_fusion);
auto manager = kernel_graph.manager();
MS_EXCEPTION_IF_NULL(manager);
auto conv = cnode->input(1);
if (conv->isa<CNode>() && AnfAlgo::GetCNodeName(conv) == prim::kPrimConv2D->name()) {
std::vector<int> output_used_num{SizeToInt(manager->node_users()[conv].size())};
AnfAlgo::SetNodeAttr(kAttrOutputUsedNum, MakeValue(output_used_num), conv);
std::unordered_set<AnfNodePtr> record{cnode, conv};
candidate_fusion->push_back(record);
SetRecordFusionId(record);
}
}
void BufferFusion::MatchBnupdateRelu(const CNodePtr &cnode, const AnfNodePtr &relu_input,
const session::KernelGraph &kernel_graph, FusedNodeRecord *candidate_fusion) {
MS_EXCEPTION_IF_NULL(cnode);
MS_EXCEPTION_IF_NULL(candidate_fusion);
auto manager = kernel_graph.manager();
MS_EXCEPTION_IF_NULL(manager);
auto getitem = relu_input->cast<CNodePtr>();
auto bnupdate = getitem->input(1);
if (bnupdate->isa<CNode>() && AnfAlgo::GetCNodeName(bnupdate) == kBNTrainingUpdateOpName) {
std::vector<int> output_used_num(AnfAlgo::GetOutputTensorNum(bnupdate), 0);
for (auto out_getitem : manager->node_users()[bnupdate]) {
auto out_getitem_ptr = out_getitem.first->cast<CNodePtr>();
auto input2 = out_getitem_ptr->input(2);
auto output_idx = GetValue<int>(GetValueNode(input2));
output_used_num[output_idx] = SizeToInt(manager->node_users()[out_getitem.first].size());
}
AnfAlgo::SetNodeAttr(kAttrOutputUsedNum, MakeValue(output_used_num), bnupdate);
std::unordered_set<AnfNodePtr> record{cnode, bnupdate};
candidate_fusion->push_back(record);
SetRecordFusionId(record);
}
}
void BufferFusion::MatchBnupdateAddRelu(const CNodePtr &cnode, const AnfNodePtr &relu_input,
const session::KernelGraph &kernel_graph, FusedNodeRecord *candidate_fusion) {
MS_EXCEPTION_IF_NULL(cnode);
MS_EXCEPTION_IF_NULL(candidate_fusion);
auto manager = kernel_graph.manager();
MS_EXCEPTION_IF_NULL(manager);
auto add = relu_input->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(add);
auto tuple_getitem = add->input(1);
if (tuple_getitem->isa<CNode>() && AnfAlgo::GetCNodeName(tuple_getitem) == prim::kPrimTupleGetItem->name()) {
auto getitem = tuple_getitem->cast<CNodePtr>();
auto bnupdate = getitem->input(1);
if (bnupdate->isa<CNode>() && AnfAlgo::GetCNodeName(bnupdate) == kBNTrainingUpdateOpName) {
std::vector<int> output_used_num(AnfAlgo::GetOutputTensorNum(bnupdate), 0);
for (auto out_getitem : manager->node_users()[bnupdate]) {
auto out_getitem_ptr = out_getitem.first->cast<CNodePtr>();
auto input2 = out_getitem_ptr->input(2);
auto output_idx = GetValue<int>(GetValueNode(input2));
output_used_num[output_idx] = SizeToInt(manager->node_users()[out_getitem.first].size());
}
AnfAlgo::SetNodeAttr(kAttrOutputUsedNum, MakeValue(output_used_num), bnupdate);
std::unordered_set<AnfNodePtr> record{cnode, relu_input, bnupdate};
candidate_fusion->push_back(record);
SetRecordFusionId(record);
}
}
}
void BufferFusion::MatchDepthwiseConvRelu(const CNodePtr &cnode, const session::KernelGraph &kernel_graph,
FusedNodeRecord *candidate_fusion, bool is_order) {
MS_EXCEPTION_IF_NULL(cnode);
MS_EXCEPTION_IF_NULL(candidate_fusion);
auto manager = kernel_graph.manager();
MS_EXCEPTION_IF_NULL(manager);
if (is_order) {
// DepthwiseConvolution--->Elemwise
auto depthwise_conv = cnode->input(1);
MS_EXCEPTION_IF_NULL(depthwise_conv);
if (cnode->isa<CNode>() && IsPrimitiveCNode(depthwise_conv, prim::kPrimDepthwiseConv2dNative)) {
std::vector<int> output_used_num{SizeToInt(manager->node_users()[depthwise_conv].size())};
AnfAlgo::SetNodeAttr(kAttrOutputUsedNum, MakeValue(output_used_num), depthwise_conv);
std::unordered_set<AnfNodePtr> record{cnode, depthwise_conv};
candidate_fusion->push_back(record);
SetRecordFusionId(record);
}
} else {
// Elemwise-->DepthwiseConvolution
auto relu = cnode->input(1);
MS_EXCEPTION_IF_NULL(relu);
if (cnode->isa<CNode>() && (IsPrimitiveCNode(relu, prim::kPrimRelu) || IsPrimitiveCNode(relu, prim::kPrimReluV2))) {
std::vector<int> output_used_num{SizeToInt(manager->node_users()[relu].size())};
AnfAlgo::SetNodeAttr(kAttrOutputUsedNum, MakeValue(output_used_num), relu);
std::unordered_set<AnfNodePtr> record{cnode, relu};
candidate_fusion->push_back(record);
SetRecordFusionId(record);
}
}
}
void BufferFusion::MatchMatmulEltwise(const CNodePtr &cnode, const AnfNodePtr &relu_input,
const session::KernelGraph &kernel_graph, FusedNodeRecord *candidate_fusion) {
MS_EXCEPTION_IF_NULL(cnode);
MS_EXCEPTION_IF_NULL(candidate_fusion);
auto manager = kernel_graph.manager();
MS_EXCEPTION_IF_NULL(manager);
std::vector<int> output_used_num{SizeToInt(manager->node_users()[relu_input].size())};
AnfAlgo::SetNodeAttr(kAttrOutputUsedNum, MakeValue(output_used_num), relu_input);
std::unordered_set<AnfNodePtr> record{cnode, relu_input};
candidate_fusion->push_back(record);
SetRecordFusionId(record);
}
void BufferFusion::MatchOpNamePattern(const session::KernelGraph &kernel_graph, FusedNodeRecord *candidate_fusion) {
MS_EXCEPTION_IF_NULL(candidate_fusion);
std::vector<AnfNodePtr> node_list = TopoSort(kernel_graph.get_return());
for (auto &node : node_list) {
if (!AnfAlgo::IsRealCNodeKernel(node) || fusion_id_allocator.HasFusionIdAttr(node) ||
AnfAlgo::CheckPrimitiveType(node, prim::kPrimReturn)) {
continue;
}
auto cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
if (AnfAlgo::GetCNodeName(cnode) == kBNTrainingReduceOpName) {
MatchConvBnreduce(cnode, kernel_graph, candidate_fusion);
} else if (AnfAlgo::GetKernelType(cnode) == KernelType::TBE_KERNEL &&
AnfAlgo::GetFusionType(cnode) == kernel::FusionType::ELEMWISE) {
auto eltwise_input = cnode->input(1);
if (eltwise_input->isa<CNode>() && AnfAlgo::CheckPrimitiveType(eltwise_input, prim::kPrimMatMul)) {
MatchMatmulEltwise(cnode, eltwise_input, kernel_graph, candidate_fusion);
}
if (AnfAlgo::GetCNodeName(cnode) == kReluV2OpName || AnfAlgo::CheckPrimitiveType(cnode, prim::kPrimRelu)) {
if (eltwise_input->isa<CNode>() && AnfAlgo::CheckPrimitiveType(eltwise_input, prim::kPrimTensorAdd)) {
MatchBnupdateAddRelu(cnode, eltwise_input, kernel_graph, candidate_fusion);
} else if (eltwise_input->isa<CNode>() && AnfAlgo::CheckPrimitiveType(eltwise_input, prim::kPrimTupleGetItem)) {
MatchBnupdateRelu(cnode, eltwise_input, kernel_graph, candidate_fusion);
} else if (eltwise_input->isa<CNode>() &&
AnfAlgo::CheckPrimitiveType(eltwise_input, prim::kPrimDepthwiseConv2dNative)) {
MatchDepthwiseConvRelu(cnode, kernel_graph, candidate_fusion, true);
}
}
} else if (AnfAlgo::GetCNodeName(cnode) == prim::kPrimDepthwiseConv2dNative->name()) {
MatchDepthwiseConvRelu(cnode, kernel_graph, candidate_fusion, false);
}
}
}
void BufferFusion::MatchFusionTypePattern(const session::KernelGraph &kernel_graph, FusedNodeRecord *candidate_fusion) {
auto manager = kernel_graph.manager();
MS_EXCEPTION_IF_NULL(manager);
MS_EXCEPTION_IF_NULL(candidate_fusion);
auto return_node = kernel_graph.get_return();
MS_EXCEPTION_IF_NULL(return_node);
if (return_node->inputs().size() <= 1) {
return;
}
std::deque<AnfNodePtr> todo;
todo.push_back(return_node->input(1));
std::unordered_set<AnfNodePtr> visited_set;
while (!todo.empty()) {
auto node = todo.front();
MS_EXCEPTION_IF_NULL(node);
todo.pop_front();
std::unordered_set<AnfNodePtr> record;
if (visited_set.find(node) != visited_set.end() || fusion_id_allocator.HasFusionIdAttr(node)) {
continue;
}
// Only fuse real cnode
if (!AnfAlgo::IsRealCNodeKernel(node)) {
auto cnode = node->cast<CNodePtr>();
if (cnode != nullptr) {
(void)todo.insert(todo.end(), cnode->inputs().begin() + 1, cnode->inputs().end());
}
continue;
}
auto cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
// cnode maybe updated
cnode = FindFusionAnfNode(manager.get(), &visited_set, &record, &todo, cnode);
if (record.size() >= MIN_PATTERN_SIZE && record.size() <= MAX_PATTERN_SIZE) {
candidate_fusion->push_back(record);
SetRecordFusionId(record);
}
if (record.find(cnode) == record.end()) {
todo.push_back(cnode);
}
// no node matched
if (record.size() == 0) {
(void)visited_set.insert(node);
}
(void)todo.insert(todo.end(), cnode->inputs().begin() + 1, cnode->inputs().end());
}
}
void BufferFusion::GetBufferFusionInfo(session::KernelGraph *kernel_graph,
std::unordered_map<int32_t, BufferFusionInfo_t> *buffer_fusion_infos) const {
MS_EXCEPTION_IF_NULL(buffer_fusion_infos);
GetFusionScopeComputeNodeList(kernel_graph, buffer_fusion_infos);
GetFusionScopeInputNodeList(*kernel_graph, buffer_fusion_infos);
GetFusionScopeOutputNodeList(kernel_graph, buffer_fusion_infos);
for (auto &buffer_fusion_info : *buffer_fusion_infos) {
buffer_fusion_info.second.kernel_build_info =
CreateFusionOpKernelInfo(buffer_fusion_info.second.inputs_list, buffer_fusion_info.second.outputs_list);
}
}
bool BufferFusion::FuseBufferFusionPattern(session::KernelGraph *kernel_graph) const {
MS_EXCEPTION_IF_NULL(kernel_graph);
bool change = false;
std::unordered_map<int32_t, BufferFusionInfo_t> buffer_fusion_infos;
buffer_fusion_infos.clear();
GetBufferFusionInfo(kernel_graph, &buffer_fusion_infos);
std::vector<mindspore::kernel::FusionScopeInfo> fusion_scope_infos;
for (auto &buffer_fusion_info : buffer_fusion_infos) {
mindspore::kernel::FusionScopeInfo fusion_scope_info;
fusion_scope_info.scope_id = buffer_fusion_info.first;
fusion_scope_info.input_nodes = buffer_fusion_info.second.inputs_list;
fusion_scope_info.compute_nodes = buffer_fusion_info.second.anf_nodes;
fusion_scope_info.output_nodes = buffer_fusion_info.second.outputs_list;
fusion_scope_infos.push_back(fusion_scope_info);
#ifdef DEBUG
DumpFusionScopeInfo(fusion_scope_info);
#endif
}
auto kernel_mods = mindspore::kernel::KernelFusion(fusion_scope_infos);
std::vector<int32_t> fusion_ids;
for (auto &buffer_fusion_info : buffer_fusion_infos) {
MS_LOG(DEBUG) << "anf node size: " << buffer_fusion_info.second.anf_nodes.size()
<< ", inputs_list size: " << buffer_fusion_info.second.inputs_list.size()
<< ", outputs list size: " << buffer_fusion_info.second.outputs_list.size();
fusion_ids.push_back(buffer_fusion_info.first);
}
// Replace fusion op from return to head
std::sort(fusion_ids.begin(), fusion_ids.end());
for (auto &fusion_id : fusion_ids) {
// Get kernel mod when supporting tbe
if (kernel_mods.find(fusion_id) == kernel_mods.end() || kernel_mods[fusion_id] == nullptr) {
MS_LOG(DEBUG) << "fusion id: " << fusion_id << ", fusion op compiling failed";
continue;
}
change = ReplaceFusionOp(&buffer_fusion_infos, fusion_id, kernel_mods[fusion_id], kernel_graph);
}
MS_LOG(DEBUG) << "End Buffer Fusion";
return change;
}
bool BufferFusion::MatchBufferFusionPattern(const session::KernelGraph &kernel_graph) {
auto manager = kernel_graph.manager();
MS_EXCEPTION_IF_NULL(manager);
auto return_node = kernel_graph.get_return();
MS_EXCEPTION_IF_NULL(return_node);
if (return_node->inputs().size() <= 1) {
return false;
}
MS_LOG(DEBUG) << "MatchBufferFusionPattern start...";
FusedNodeRecord candidate_fusion;
MatchOpNamePattern(kernel_graph, &candidate_fusion);
MatchFusionTypePattern(kernel_graph, &candidate_fusion);
if (candidate_fusion.empty()) {
return false;
}
MS_LOG(DEBUG) << "MatchBufferFusionPattern Success...";
return true;
}
bool BufferFusion::ReplaceFusionOp(std::unordered_map<int32_t, BufferFusionInfo_t> *buffer_fusion_infos,
int32_t fusion_id, const kernel::KernelModPtr &kernel_ptr,
session::KernelGraph *kernel_graph) const {
auto buffer_fusion_info = (*buffer_fusion_infos)[fusion_id];
auto buffer_fusion = CreateFusionOp(buffer_fusion_info.inputs_list, buffer_fusion_info.outputs_list,
buffer_fusion_info.anf_nodes, kernel_graph);
AnfAlgo::SetSelectKernelBuildInfo(buffer_fusion_info.kernel_build_info, buffer_fusion.get());
// Set abstract of fusion_op node
std::vector<TypeId> types;
std::vector<std::vector<size_t>> shapes;
for (const auto &out_node : buffer_fusion_info.outputs_list) {
for (size_t idx = 0; idx < AnfAlgo::GetOutputTensorNum(out_node); ++idx) {
types.push_back(AnfAlgo::GetOutputInferDataType(out_node, idx));
shapes.push_back(AnfAlgo::GetOutputInferShape(out_node, idx));
}
}
if (types.empty() || shapes.empty()) {
MS_LOG(WARNING) << "buffer_fusion_info.outputs_list is empty";
return false;
}
AnfAlgo::SetOutputInferTypeAndShape(types, shapes, buffer_fusion.get());
AnfAlgo::SetKernelMod(kernel_ptr, buffer_fusion.get());
SetFusionOpRefInfos(kernel_graph, buffer_fusion_info.outputs_list, buffer_fusion);
ReplaceOldNode(buffer_fusion_infos, fusion_id, buffer_fusion, kernel_graph);
return true;
}
bool BufferFusion::Run(const FuncGraphPtr &graph) {
bool changed = false;
MS_EXCEPTION_IF_NULL(graph);
auto kernel_graph = graph->cast<std::shared_ptr<session::KernelGraph>>();
MS_EXCEPTION_IF_NULL(kernel_graph);
fusion_id_allocator.Init();
if (MatchBufferFusionPattern(*kernel_graph)) {
changed = FuseBufferFusionPattern(kernel_graph.get());
}
// clear fusion_id attr
for (auto &node : graph->nodes()) {
if (node != nullptr && node->isa<CNode>()) {
AnfAlgo::EraseNodeAttr(kAttrFusionId, node);
}
}
return changed;
}
} // namespace opt
} // namespace mindspore
/**
* Copyright 2019 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_BUFFER_FUSION_BUFFER_FUSION_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_BUFFER_FUSION_BUFFER_FUSION_H_
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "ir/anf.h"
#include "pre_activate/common/pass.h"
#include "pre_activate/common/fusion_id_allocator.h"
#include "device/kernel_info.h"
#include "kernel/kernel.h"
#include "session/kernel_graph.h"
namespace mindspore {
namespace opt {
struct BufferFusionInfo_t {
std::vector<AnfNodePtr> anf_nodes;
std::vector<AnfNodePtr> inputs_list;
std::vector<AnfNodePtr> outputs_list;
kernel::KernelBuildInfoPtr kernel_build_info;
};
using FusedNodeRecord = std::vector<std::unordered_set<AnfNodePtr>>;
class BufferFusion : public Pass {
public:
BufferFusion() : Pass("buffer_fusion") {}
~BufferFusion() override = default;
bool Run(const FuncGraphPtr &graph) override;
private:
void SetRecordFusionId(const std::unordered_set<AnfNodePtr> &record);
void MatchConvBnreduce(const CNodePtr &cnode, const session::KernelGraph &kernel_graph,
FusedNodeRecord *candidate_fusion);
void MatchBnupdateRelu(const CNodePtr &cnode, const AnfNodePtr &relu_input, const session::KernelGraph &kernel_graph,
FusedNodeRecord *candidate_fusion);
void MatchBnupdateAddRelu(const CNodePtr &cnode, const AnfNodePtr &relu_input,
const session::KernelGraph &kernel_graph, FusedNodeRecord *candidate_fusion);
void MatchDepthwiseConvRelu(const CNodePtr &cnode, const session::KernelGraph &kernel_graph,
FusedNodeRecord *candidate_fusion, bool is_order);
void MatchMatmulEltwise(const CNodePtr &cnode, const AnfNodePtr &relu_input, const session::KernelGraph &kernel_graph,
FusedNodeRecord *candidate_fusion);
void MatchOpNamePattern(const session::KernelGraph &kernel_graph, FusedNodeRecord *candidate_fusion);
void MatchFusionTypePattern(const session::KernelGraph &kernel_graph, FusedNodeRecord *candidate_fusion);
void GetBufferFusionInfo(session::KernelGraph *kernel_graph,
std::unordered_map<int32_t, BufferFusionInfo_t> *buffer_fusion_infos) const;
bool ReplaceFusionOp(std::unordered_map<int32_t, BufferFusionInfo_t> *buffer_fusion_infos, int32_t fusion_id,
const kernel::KernelModPtr &kernel_ptr, session::KernelGraph *kernel_graph) const;
bool MatchBufferFusionPattern(const session::KernelGraph &kernel_graph);
bool FuseBufferFusionPattern(session::KernelGraph *kernel_graph) const;
FusionIdAllocator fusion_id_allocator;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_BUFFER_FUSION_BUFFER_FUSION_H_
......@@ -37,6 +37,13 @@ const int8_t ELTWISE_USE = 1;
const int8_t MAX_ELTWISE_SIZE = 6;
using FusedNodeRecord = std::vector<std::unordered_set<AnfNodePtr>>;
struct BufferFusionInfo_t {
std::vector<AnfNodePtr> anf_nodes;
std::vector<AnfNodePtr> inputs_list;
std::vector<AnfNodePtr> outputs_list;
kernel::KernelBuildInfoPtr kernel_build_info;
};
class FusionBasePass : public Pass {
public:
FusionBasePass(const std::string &name, FusionIdAllocatorPtr idAllocator)
......
......@@ -15,6 +15,7 @@
*/
#include "pre_activate/ascend/buffer_fusion/reduce_eltwise_fusion_pass.h"
#include <vector>
#include <algorithm>
#include <unordered_set>
#include <memory>
#include <string>
......@@ -51,7 +52,9 @@ void ReduceEltwiseFusionPass::MatchReduceEltwise(const CNodePtr &cnode, const se
if (AnfAlgo::GetKernelType(eltwise_input) == KernelType::TBE_KERNEL &&
AnfAlgo::GetFusionType(eltwise_input) == kernel::FusionType::COMMREDUCE) {
(void)record.insert(eltwise_input);
auto previous_eltwise_input = cnode->input(1);
auto previous_input_cnode = eltwise_input->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(previous_input_cnode);
auto previous_eltwise_input = previous_input_cnode->input(1);
auto previous_size = record.size();
while (CheckEltWiseNode(manager.get(), previous_eltwise_input)) {
(void)record.insert(previous_eltwise_input);
......@@ -71,6 +74,7 @@ void ReduceEltwiseFusionPass::MatchSingleFusionPattern(const session::KernelGrap
FusedNodeRecord *candidate_fusion) {
MS_EXCEPTION_IF_NULL(candidate_fusion);
std::vector<AnfNodePtr> node_list = TopoSort(kernel_graph.get_return());
std::reverse(node_list.begin(), node_list.end());
for (auto &node : node_list) {
if (!AnfAlgo::IsRealCNodeKernel(node) || fusion_id_allocator->HasFusionIdAttr(node) ||
AnfAlgo::CheckPrimitiveType(node, prim::kPrimReturn)) {
......
......@@ -51,7 +51,9 @@ void SegmentEltwiseFusionPass::MatchSegmentEltwise(const CNodePtr &cnode, const
if (AnfAlgo::GetKernelType(eltwise_input) == KernelType::TBE_KERNEL &&
AnfAlgo::GetFusionType(eltwise_input) == kernel::FusionType::SEGMENT) {
(void)record.insert(eltwise_input);
auto previous_eltwise_input = cnode->input(1);
auto previous_input_cnode = eltwise_input->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(previous_input_cnode);
auto previous_eltwise_input = previous_input_cnode->input(1);
auto previous_size = record.size();
while (CheckEltWiseNode(manager.get(), previous_eltwise_input)) {
(void)record.insert(previous_eltwise_input);
......
......@@ -19,13 +19,13 @@
#include <unordered_set>
#include <vector>
#include "pre_activate/ascend/buffer_fusion/fusion_base_pass.h"
#include "ir/anf.h"
#include "pre_activate/common/pass.h"
#include "pre_activate/common/fusion_id_allocator.h"
#include "device/kernel_info.h"
#include "kernel/kernel.h"
#include "session/kernel_graph.h"
#include "pre_activate/ascend/buffer_fusion/buffer_fusion.h"
namespace mindspore {
namespace opt {
......
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "pre_activate/pass/remove_nop_nodes.h"
#include "common/utils.h"
#include "pre_activate/common/helper.h"
namespace mindspore {
namespace opt {
const AnfNodePtr RemoveNopNodes::Process(const FuncGraphPtr &, const AnfNodePtr &node, const EquivPtr &) const {
if (node == nullptr || !node->isa<CNode>()) {
return nullptr;
}
CNodePtr cnode = node->cast<CNodePtr>();
MS_EXCEPTION_IF_NULL(cnode);
if (!IsNopNode(node)) {
return nullptr;
}
return cnode->input(1);
}
} // namespace opt
} // namespace mindspore
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_PASS_REMOVE_NOP_NODES_H_
#define MINDSPORE_CCSRC_PRE_ACTIVATE_PASS_REMOVE_NOP_NODES_H_
#include "ir/anf.h"
#include "pre_activate/common/optimizer.h"
namespace mindspore {
namespace opt {
class RemoveNopNodes : public PatternProcessPass {
public:
explicit RemoveNopNodes(bool multigraph = true) : PatternProcessPass("remove_nop_nodes", multigraph) {}
~RemoveNopNodes() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_PRE_ACTIVATE_PASS_REMOVE_NOP_NODES_H_
......@@ -21,7 +21,19 @@
#include "device/kernel_info.h"
#include "pre_activate/common/optimizer.h"
#include "session/anf_runtime_algorithm.h"
#include "pre_activate/ascend/buffer_fusion/buffer_fusion.h"
#include "pre_activate/ascend/buffer_fusion/ub_pattern_fusion.h"
#include "pre_activate/ascend/buffer_fusion/eltwise_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/conv2dbackprop_eltwise_eltwise_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/conv2dbackprop_eltwise_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/conv_single_in_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/conv_double_in_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/matmul_eltwise_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/depthwiseconv_eltwise_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/bnupdate_eltwise_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/bnupdate_eltwise_eltwise_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/conv_bnreduce_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/reduce_eltwise_fusion_pass.h"
#include "pre_activate/ascend/buffer_fusion/segment_eltwise_fusion_pass.h"
namespace mindspore {
namespace opt {
......@@ -79,10 +91,13 @@ TEST_F(TestHWBufferFusion, test_tbe_eltwise_fusion_1) {
cast->set_kernel_info(std::make_shared<device::KernelInfo>());
AnfAlgo::SetSelectKernelBuildInfo(builder1.Build(), cast.get());
auto fusion_id_allocator = std::make_shared<FusionIdAllocator>();
MS_EXCEPTION_IF_NULL(fusion_id_allocator);
fusion_id_allocator->Init();
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto buffer_fusion_pass = std::make_shared<opt::BufferFusion>();
pm->AddPass(buffer_fusion_pass);
pm->AddPass(std::make_shared<EltwiseFusionPass>(fusion_id_allocator));
pm->AddPass(std::make_shared<UbPatternFusion>());
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
......@@ -168,10 +183,13 @@ TEST_F(TestHWBufferFusion, test_tbe_eltwise_fusion_2) {
biasadd->set_kernel_info(std::make_shared<device::KernelInfo>());
AnfAlgo::SetSelectKernelBuildInfo(builder2.Build(), biasadd.get());
auto fusion_id_allocator = std::make_shared<FusionIdAllocator>();
MS_EXCEPTION_IF_NULL(fusion_id_allocator);
fusion_id_allocator->Init();
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto buffer_fusion_pass = std::make_shared<opt::BufferFusion>();
pm->AddPass(buffer_fusion_pass);
pm->AddPass(std::make_shared<ReduceEltwiseFusionPass>(fusion_id_allocator));
pm->AddPass(std::make_shared<UbPatternFusion>());
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
......@@ -255,10 +273,13 @@ TEST_F(TestHWBufferFusion, test_tbe_reduce_eltwise_fusion) {
biasaddgrad->set_kernel_info(std::make_shared<device::KernelInfo>());
AnfAlgo::SetSelectKernelBuildInfo(builder2.Build(), biasaddgrad.get());
auto fusion_id_allocator = std::make_shared<FusionIdAllocator>();
MS_EXCEPTION_IF_NULL(fusion_id_allocator);
fusion_id_allocator->Init();
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto buffer_fusion_pass = std::make_shared<opt::BufferFusion>();
pm->AddPass(buffer_fusion_pass);
pm->AddPass(std::make_shared<ReduceEltwiseFusionPass>(fusion_id_allocator));
pm->AddPass(std::make_shared<UbPatternFusion>());
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
......@@ -321,10 +342,13 @@ TEST_F(TestHWBufferFusion, test_tbe_matmul_eltwise_fusion) {
cast->set_kernel_info(std::make_shared<device::KernelInfo>());
AnfAlgo::SetSelectKernelBuildInfo(builder1.Build(), cast.get());
auto fusion_id_allocator = std::make_shared<FusionIdAllocator>();
MS_EXCEPTION_IF_NULL(fusion_id_allocator);
fusion_id_allocator->Init();
auto optimizer = std::make_shared<opt::GraphOptimizer>();
auto pm = std::make_shared<opt::PassManager>();
auto buffer_fusion_pass = std::make_shared<opt::BufferFusion>();
pm->AddPass(buffer_fusion_pass);
pm->AddPass(std::make_shared<MatmulEltwiseFusionPass>(fusion_id_allocator));
pm->AddPass(std::make_shared<UbPatternFusion>());
optimizer->AddPassManager(pm);
FuncGraphPtr new_graph = optimizer->Optimize(kg);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册