Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
2031710d
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2031710d
编写于
6月 01, 2020
作者:
H
hongxing
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix bug and optimize code
上级
26d05be8
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
201 addition
and
166 deletion
+201
-166
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.cc
.../parallel/auto_parallel/rec_core/rec_generate_strategy.cc
+165
-147
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.h
...c/parallel/auto_parallel/rec_core/rec_generate_strategy.h
+18
-14
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_graph.h
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_graph.h
+2
-1
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.cc
.../ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.cc
+1
-1
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.h
...e/ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.h
+2
-1
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_partition.cc
...re/ccsrc/parallel/auto_parallel/rec_core/rec_partition.cc
+2
-2
mindspore/ccsrc/parallel/step_auto_parallel.cc
mindspore/ccsrc/parallel/step_auto_parallel.cc
+11
-0
未找到文件。
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.cc
浏览文件 @
2031710d
...
...
@@ -39,17 +39,18 @@ void GenerateStrategy(std::shared_ptr<Graph> graph, const std::vector<std::share
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
(
new
std
::
vector
<
size_t
>
);
GenerateEliminatedOperatorStrategyForward
(
graph
,
ops
,
eli_list
,
input_tensor_names
,
index_list
,
no_stra_op_list
);
GenerateEliminatedOperatorStrategyBackward
(
ops
,
input_tensor_names
,
no_stra_op_list
);
GenerateRemainingOperatorStrategy
(
graph
,
ops
,
input_tensor_names
,
index_list
,
no_stra_op_list
);
}
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareMatMul
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
;
auto
attrs
=
ops
[
iter_ops
]
->
attrs
();
bool
transpose_a
=
attrs
[
TRANSPOSE_A
]
->
cast
<
BoolImmPtr
>
()
->
value
();
bool
transpose_b
=
attrs
[
TRANSPOSE_B
]
->
cast
<
BoolImmPtr
>
()
->
value
();
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
std
::
vector
<
int32_t
>
s
;
auto
attrs
=
ops
[
iter_ops
]
->
attrs
();
bool
transpose_a
=
attrs
[
TRANSPOSE_A
]
->
cast
<
BoolImmPtr
>
()
->
value
();
bool
transpose_b
=
attrs
[
TRANSPOSE_B
]
->
cast
<
BoolImmPtr
>
()
->
value
();
if
(
transpose_a
&&
(
iter_op_inputs
==
0
))
{
s
.
push_back
(
static_cast
<
int32_t
>
(
1.0
/
graph
->
nodes
[
iter_graph
].
apply
.
arguments
[
iter_op_inputs
].
tensor_str
.
str_w
));
...
...
@@ -71,43 +72,20 @@ std::vector<std::vector<int32_t>> PrepareMatMul(const std::shared_ptr<Graph> &gr
return
strategies
;
}
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareVirtualDataset
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
=
MakeDataParallelStrategy
(
ops
,
iter_ops
);
strategies
[
1
][
0
]
=
strategies
[
0
][
0
];
std
::
vector
<
std
::
vector
<
int32_t
>>
PreparePReLU
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
=
MakeDataParallelStrategy
(
graph
,
ops
,
iter_graph
,
iter_ops
);
strategies
[
1
][
0
]
=
1
;
return
strategies
;
}
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareScalarInputOperator
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareBiasAdd
(
std
::
vector
<
int32_t
>
s
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
;
auto
dev_num
=
g_device_manager
->
DeviceNum
();
size_t
cut_num
=
1
;
for
(
size_t
iter_s
=
0
;
iter_s
<
s
.
size
();
iter_s
++
)
{
cut_num
*=
s
[
iter_s
];
}
if
(
cut_num
!=
dev_num
)
{
std
::
vector
<
int32_t
>
s_max
=
s
;
for
(
size_t
dim
=
0
;
dim
<
(
size_t
)
ops
[
iter_ops
]
->
inputs_tensor_info
()[
0
].
shape
().
size
();
dim
++
)
{
size_t
shape
=
ops
[
iter_ops
]
->
inputs_tensor_info
()[
0
].
shape
()[
dim
]
/
s
[
dim
];
while
(
cut_num
<
dev_num
&&
shape
%
2
==
0
)
{
shape
=
shape
/
2
;
s_max
[
dim
]
=
s_max
[
dim
]
*
2
;
cut_num
=
cut_num
*
2
;
}
if
(
cut_num
==
dev_num
)
{
break
;
}
}
s
=
s_max
;
}
strategies
.
push_back
(
s
);
std
::
vector
<
int32_t
>
s_biasadd
;
s_biasadd
.
push_back
(
s
[
1
]);
strategies
.
push_back
(
s_biasadd
);
return
strategies
;
}
...
...
@@ -131,16 +109,13 @@ std::vector<std::vector<int32_t>> MakeRecSearchStrategy(const std::shared_ptr<Gr
}
StrategyPtr
origin_strategy
=
ops
[
iter_ops
]
->
strategy
();
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
;
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
if
(
iter_op_inputs
>=
origin_strategy
->
GetInputDim
().
size
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Strategy's InputDim out of range."
;
}
// size_t output_size = ops[iter_ops]->outputs_tensor_info()[0].shape().size();
size_t
output_size
=
origin_strategy
->
GetInputDim
()[
iter_op_inputs
].
size
();
std
::
vector
<
int32_t
>
s
;
if
(
output_size
==
4
)
{
s
.
push_back
(
...
...
@@ -164,14 +139,14 @@ std::vector<std::vector<int32_t>> MakeRecSearchStrategy(const std::shared_ptr<Gr
}
else
{
MS_LOG
(
ERROR
)
<<
"Tensor's output size is unexcepted."
;
}
strategies
.
push_back
(
s
);
}
return
strategies
;
}
std
::
vector
<
std
::
vector
<
int32_t
>>
MakeDataParallelStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
MakeDataParallelStrategy
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
)
{
if
(
ops
.
empty
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Operators is empty."
;
}
...
...
@@ -180,8 +155,9 @@ std::vector<std::vector<int32_t>> MakeDataParallelStrategy(const std::vector<std
}
StrategyPtr
origin_strategy
=
ops
[
iter_ops
]
->
strategy
();
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
;
size_t
max_device_num
=
g_device_manager
->
DeviceNum
();
size_t
target_tensor_batch
=
ops
[
iter_ops
]
->
outputs_tensor_info
()[
0
].
shape
()[
0
];
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
if
(
iter_op_inputs
>=
origin_strategy
->
GetInputDim
().
size
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Strategy's InputDim out of range."
;
...
...
@@ -192,8 +168,6 @@ std::vector<std::vector<int32_t>> MakeDataParallelStrategy(const std::vector<std
for
(
size_t
dim
=
0
;
dim
<
input_size
;
dim
++
)
{
if
(
input_size
==
1
||
input_size
==
2
||
input_size
==
4
)
{
if
(
dim
==
0
)
{
size_t
max_device_num
=
g_device_manager
->
DeviceNum
();
size_t
target_tensor_batch
=
ops
[
iter_ops
]
->
outputs_tensor_info
()[
0
].
shape
()[
0
];
s
.
push_back
(
std
::
min
(
max_device_num
,
target_tensor_batch
));
}
else
{
s
.
push_back
(
1
);
...
...
@@ -202,9 +176,21 @@ std::vector<std::vector<int32_t>> MakeDataParallelStrategy(const std::vector<std
MS_LOG
(
ERROR
)
<<
"Tensor's shape is unknown."
;
}
}
strategies
.
push_back
(
s
);
}
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_n
=
1.0
;
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_c
=
1.0
;
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_h
=
1.0
;
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_w
=
1.0
;
if
(
ops
[
iter_ops
]
->
outputs_tensor_info
()[
0
].
shape
().
size
()
==
1
)
{
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_w
=
1.0
/
std
::
min
(
max_device_num
,
target_tensor_batch
);
}
else
if
(
ops
[
iter_ops
]
->
outputs_tensor_info
()[
0
].
shape
().
size
()
==
2
)
{
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_h
=
1.0
/
std
::
min
(
max_device_num
,
target_tensor_batch
);
}
else
if
(
ops
[
iter_ops
]
->
outputs_tensor_info
()[
0
].
shape
().
size
()
==
4
)
{
graph
->
nodes
[
iter_graph
].
tensor_parm
.
tensor_str
.
str_n
=
1.0
/
std
::
min
(
max_device_num
,
target_tensor_batch
);
}
return
strategies
;
}
...
...
@@ -217,20 +203,18 @@ std::vector<std::vector<int32_t>> PrepareStrategy(const std::shared_ptr<Graph> &
if
(
iter_ops
>=
ops
.
size
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Operators' elements out of range."
;
}
MS_EXCEPTION_IF_NULL
(
ops
[
iter_ops
]);
auto
type
=
ops
[
iter_ops
]
->
type
();
if
(
type
==
VIRTUAL_DATA_SET
)
{
return
PrepareVirtualDataset
(
ops
,
iter_ops
);
}
auto
idx
=
DictOpType
.
find
(
type
);
if
(
idx
==
DictOpType
.
end
())
{
return
MakeDataParallelStrategy
(
ops
,
iter_ops
);
return
MakeDataParallelStrategy
(
graph
,
ops
,
iter_graph
,
iter_ops
);
}
if
(
type
==
MATMUL
)
{
return
PrepareMatMul
(
graph
,
ops
,
iter_graph
,
iter_ops
);
}
else
if
(
type
==
RESHAPE
)
{
return
MakeDataParallelStrategy
(
ops
,
iter_ops
);
}
else
if
(
type
==
PRELU
)
{
return
PreparePReLU
(
graph
,
ops
,
iter_graph
,
iter_ops
);
}
else
{
return
MakeRecSearchStrategy
(
graph
,
ops
,
iter_graph
,
iter_ops
);
}
...
...
@@ -242,28 +226,25 @@ void GeneratePartitionedOperatorStrategy(const std::shared_ptr<Graph> graph,
for
(
size_t
iter_ops
=
0
;
iter_ops
<
(
size_t
)
index_list
->
size
();
iter_ops
++
)
{
std
::
vector
<
std
::
vector
<
int32_t
>>
strategies
;
size_t
iter_graph
=
index_list
->
at
(
iter_ops
);
if
(
iter_graph
==
SIZE_MAX
)
{
StrategyPtr
sp
=
std
::
make_shared
<
Strategy
>
(
0
,
strategies
);
ops
[
iter_ops
]
->
SetSelectedStrategyAndCost
(
sp
,
ops
[
iter_ops
]
->
selected_cost
());
continue
;
if
(
iter_graph
!=
SIZE_MAX
)
{
strategies
=
PrepareStrategy
(
graph
,
ops
,
iter_graph
,
iter_ops
);
}
strategies
=
PrepareStrategy
(
graph
,
ops
,
iter_graph
,
iter_ops
);
StrategyPtr
sp
=
std
::
make_shared
<
Strategy
>
(
0
,
strategies
);
ops
[
iter_ops
]
->
SetSelectedStrategyAndCost
(
sp
,
ops
[
iter_ops
]
->
selected_cost
());
}
}
in
t
FindIndexOfOperatorIncoming
(
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
size_t
iter_ops
)
{
int
incoming_op_index
=
-
1
;
for
(
size_t
i
=
1
;
i
<
(
size_t
)
input_tensor_names
[
iter_ops
].
size
();
i
++
)
{
for
(
size_t
j
=
0
;
j
<
(
size_t
)
input_tensor_names
.
size
();
j
++
)
{
size_
t
FindIndexOfOperatorIncoming
(
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
size_t
iter_ops
)
{
size_t
incoming_op_index
=
SIZE_MAX
;
for
(
size_t
i
=
1
;
i
<
input_tensor_names
[
iter_ops
].
size
();
i
++
)
{
for
(
size_t
j
=
0
;
j
<
input_tensor_names
.
size
();
j
++
)
{
if
(
input_tensor_names
[
iter_ops
][
i
]
==
input_tensor_names
[
j
][
0
])
{
incoming_op_index
=
j
;
break
;
}
}
if
(
incoming_op_index
!=
-
1
)
{
if
(
incoming_op_index
!=
SIZE_MAX
)
{
break
;
}
}
...
...
@@ -298,12 +279,16 @@ std::vector<int32_t> CopyIncomingOperatorOutputStrategy(const std::shared_ptr<Gr
}
std
::
vector
<
int32_t
>
PrepareIncomingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
in
t
incoming_op_index
)
{
const
size_
t
incoming_op_index
)
{
std
::
vector
<
int32_t
>
s
;
if
(
ops
[
incoming_op_index
]
->
type
()
==
RESHAPE
)
{
return
s
;
}
auto
strategy
=
ops
[
incoming_op_index
]
->
selected_strategy
();
if
(
strategy
->
GetInputNumber
()
==
0
)
{
return
s
;
}
for
(
size_t
i
=
0
;
i
<
(
size_t
)
ops
[
incoming_op_index
]
->
inputs_tensor_info
().
size
();
i
++
)
{
if
(
ops
[
incoming_op_index
]
->
inputs_tensor_info
()[
i
].
shape
().
size
()
==
0
)
{
continue
;
...
...
@@ -327,6 +312,7 @@ std::vector<int32_t> GetAxisList(const std::vector<std::shared_ptr<OperatorInfo>
}
else
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Axis type is invalid, neither tuple nor list."
<<
std
::
endl
;
}
for
(
auto
&
element
:
elements
)
{
if
(
!
element
->
isa
<
Int32Imm
>
())
{
MS_LOG
(
EXCEPTION
)
<<
"Failure: Dimension indexes is not Int32."
<<
std
::
endl
;
...
...
@@ -338,12 +324,13 @@ std::vector<int32_t> GetAxisList(const std::vector<std::shared_ptr<OperatorInfo>
}
std
::
vector
<
int32_t
>
ModifyStrategyIfSqueezeIncoming
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
in
t
incoming_op_index
,
std
::
vector
<
int32_t
>
s
)
{
const
size_
t
incoming_op_index
,
std
::
vector
<
int32_t
>
s
)
{
std
::
vector
<
int32_t
>
s_Squeeze
;
std
::
vector
<
int32_t
>
stra_dim_list
;
for
(
size_t
i
=
0
;
i
<
s
.
size
();
i
++
)
{
stra_dim_list
.
push_back
(
i
);
}
auto
axis_list
=
GetAxisList
(
ops
,
incoming_op_index
);
for
(
auto
axis
:
axis_list
)
{
auto
it
=
find
(
stra_dim_list
.
begin
(),
stra_dim_list
.
end
(),
axis
);
...
...
@@ -355,6 +342,7 @@ std::vector<int32_t> ModifyStrategyIfSqueezeIncoming(const std::vector<std::shar
}
stra_dim_list
.
erase
(
it
);
}
for
(
size_t
i
=
0
;
i
<
(
size_t
)
stra_dim_list
.
size
();
i
++
)
{
s_Squeeze
.
push_back
(
s
[
stra_dim_list
[
i
]]);
}
...
...
@@ -391,12 +379,13 @@ std::vector<int32_t> GetDimList(const std::vector<std::shared_ptr<OperatorInfo>>
}
std
::
vector
<
int32_t
>
ModifyStrategyIfReduceIncoming
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
in
t
incoming_op_index
,
std
::
vector
<
int32_t
>
s
)
{
const
size_
t
incoming_op_index
,
std
::
vector
<
int32_t
>
s
)
{
std
::
vector
<
int32_t
>
s_Reduce
;
std
::
vector
<
int32_t
>
axis_list
;
for
(
size_t
i
=
0
;
i
<
s
.
size
();
i
++
)
{
axis_list
.
push_back
(
i
);
}
auto
dim_list
=
GetDimList
(
ops
,
incoming_op_index
);
for
(
auto
axis
:
dim_list
)
{
auto
it
=
find
(
axis_list
.
begin
(),
axis_list
.
end
(),
axis
);
...
...
@@ -405,6 +394,7 @@ std::vector<int32_t> ModifyStrategyIfReduceIncoming(const std::vector<std::share
}
axis_list
.
erase
(
it
);
}
for
(
size_t
i
=
0
;
i
<
(
size_t
)
axis_list
.
size
();
i
++
)
{
s_Reduce
.
push_back
(
s
[
axis_list
[
i
]]);
}
...
...
@@ -412,10 +402,10 @@ std::vector<int32_t> ModifyStrategyIfReduceIncoming(const std::vector<std::share
}
std
::
vector
<
int32_t
>
CopyIncomingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
int
incoming_op_index
,
const
size_t
iter_ops
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
)
{
const
size_t
iter_ops
,
const
size_t
incoming_op_index
)
{
std
::
vector
<
int32_t
>
s
;
s
=
PrepareIncomingOperatorInputStrategy
(
ops
,
incoming_op_index
);
if
(
s
.
size
()
!=
0
)
{
if
(
ops
[
incoming_op_index
]
->
type
()
==
SQUEEZE
)
{
s
=
ModifyStrategyIfSqueezeIncoming
(
ops
,
incoming_op_index
,
s
);
...
...
@@ -429,27 +419,27 @@ std::vector<int32_t> CopyIncomingOperatorInputStrategy(const std::vector<std::sh
}
std
::
vector
<
std
::
vector
<
int32_t
>>
GenerateStrategiesFromStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
)
{
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
basic_stra
)
{
std
::
vector
<
int32_t
>
s_empty
=
{};
std
::
vector
<
std
::
vector
<
int32_t
>>
stra
;
MS_EXCEPTION_IF_NULL
(
ops
[
iter_ops
]);
if
(
s
.
size
()
==
0
)
{
if
(
basic_stra
.
size
()
==
0
)
{
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
(
size_t
)
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
stra
.
push_back
(
s
);
stra
.
push_back
(
basic_stra
);
}
return
stra
;
}
MS_EXCEPTION_IF_NULL
(
ops
[
iter_ops
]);
if
(
ops
[
iter_ops
]
->
type
()
==
BIAS_ADD
||
ops
[
iter_ops
]
->
type
()
==
PRELU
)
{
return
PrepareScalarInputOperator
(
ops
,
iter_ops
,
s
);
if
(
ops
[
iter_ops
]
->
type
()
==
BIAS_ADD
)
{
return
PrepareBiasAdd
(
basic_stra
);
}
if
(
ops
[
iter_ops
]
->
type
()
==
ONEHOT
)
{
return
PrepareOneHot
(
s
);
return
PrepareOneHot
(
basic_stra
);
}
auto
dev_num
=
g_device_manager
->
DeviceNum
();
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
(
size_t
)
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
if
(
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
().
size
()
==
0
)
{
...
...
@@ -457,41 +447,19 @@ std::vector<std::vector<int32_t>> GenerateStrategiesFromStrategy(const std::vect
continue
;
}
size_t
cut_num
=
1
;
for
(
size_t
iter_s
=
0
;
iter_s
<
s
.
size
();
iter_s
++
)
{
cut_num
*=
s
[
iter_s
];
}
if
(
cut_num
==
dev_num
)
{
std
::
vector
<
int32_t
>
s_1
=
s
;
bool
modified
=
false
;
for
(
size_t
j
=
0
;
j
<
(
size_t
)
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
().
size
();
j
++
)
{
if
(
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
()[
j
]
==
1
)
{
s_1
[
j
]
=
1
;
modified
=
true
;
}
std
::
vector
<
int32_t
>
tmp_stra
=
basic_stra
;
bool
modified
=
false
;
for
(
size_t
j
=
0
;
j
<
(
size_t
)
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
().
size
();
j
++
)
{
if
(
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
()[
j
]
==
1
)
{
tmp_stra
[
j
]
=
1
;
modified
=
true
;
}
if
(
modified
)
{
stra
.
push_back
(
s_1
);
}
else
{
stra
.
push_back
(
s
);
}
continue
;
}
std
::
vector
<
int32_t
>
s_max
=
s
;
for
(
size_t
dim
=
0
;
dim
<
(
size_t
)
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
().
size
();
dim
++
)
{
size_t
shape
=
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
()[
dim
]
/
s
[
dim
];
while
(
cut_num
<
dev_num
&&
shape
%
2
==
0
)
{
shape
=
shape
/
2
;
s_max
[
dim
]
=
s_max
[
dim
]
*
2
;
cut_num
=
cut_num
*
2
;
}
if
(
cut_num
==
dev_num
)
{
break
;
}
if
(
modified
)
{
stra
.
push_back
(
tmp_stra
);
}
else
{
stra
.
push_back
(
basic_stra
);
}
stra
.
push_back
(
s_max
);
}
return
stra
;
}
...
...
@@ -502,17 +470,17 @@ void GenerateEliminatedOperatorStrategyForward(const std::shared_ptr<Graph> grap
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
)
{
for
(
int
eli_index
=
eli_list
->
size
()
-
1
;
eli_index
>=
0
;
eli_index
--
)
{
size_t
iter_ops
=
eli_list
->
at
(
eli_index
)[
0
];
for
(
size_t
eli_index
=
eli_list
->
size
();
eli_index
>
0
;
eli_index
--
)
{
size_t
iter_ops
=
eli_list
->
at
(
eli_index
-
1
)[
0
];
std
::
vector
<
std
::
vector
<
int32_t
>>
stra
;
std
::
vector
<
int32_t
>
s
;
in
t
incoming_op_index
=
FindIndexOfOperatorIncoming
(
input_tensor_names
,
iter_ops
);
if
(
incoming_op_index
!=
-
1
)
{
size_
t
incoming_op_index
=
FindIndexOfOperatorIncoming
(
input_tensor_names
,
iter_ops
);
if
(
incoming_op_index
!=
SIZE_MAX
&&
ops
[
iter_ops
]
->
type
()
!=
ONEHOT
)
{
auto
iter_graph
=
index_list
->
at
(
incoming_op_index
);
if
(
iter_graph
!=
SIZE_MAX
)
{
s
=
CopyIncomingOperatorOutputStrategy
(
graph
,
ops
,
iter_ops
,
iter_graph
);
}
else
{
s
=
CopyIncomingOperatorInputStrategy
(
ops
,
i
ncoming_op_index
,
iter_ops
,
no_stra_op_list
);
s
=
CopyIncomingOperatorInputStrategy
(
ops
,
i
ter_ops
,
incoming_op_index
);
}
}
...
...
@@ -534,7 +502,7 @@ std::vector<int32_t> ModifyStrategyIfSqueezeOutgoing(const std::vector<std::shar
size_t
s_index
=
0
;
size_t
axis_list_index
=
0
;
for
(
size_t
i
=
0
;
i
<
(
size_t
)(
s
.
size
()
+
axis_list
.
size
());
i
++
)
{
if
(
(
i
)
==
(
size_t
)
axis_list
[
axis_list_index
])
{
if
(
i
==
(
size_t
)
axis_list
[
axis_list_index
])
{
s_Squeeze
.
push_back
(
1
);
axis_list_index
++
;
}
else
{
...
...
@@ -542,46 +510,49 @@ std::vector<int32_t> ModifyStrategyIfSqueezeOutgoing(const std::vector<std::shar
s_index
++
;
}
}
return
s_Squeeze
;
}
std
::
vector
<
int32_t
>
ModifyStrategyIfReduceOutgoing
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
)
{
std
::
vector
<
int32_t
>
dim_list
=
GetDimList
(
ops
,
iter_ops
);
if
(
dim_list
.
size
()
==
0
)
{
return
s
;
size_t
cut
=
1
;
for
(
size_t
i
=
0
;
i
<
s_Squeeze
.
size
();
i
++
)
{
cut
*=
s_Squeeze
[
i
];
}
std
::
vector
<
int32_t
>
s_Reduce
;
size_t
s_index
=
0
;
size_t
dim_list_index
=
0
;
for
(
size_t
i
=
0
;
i
<
(
size_t
)(
s
.
size
()
+
dim_list
.
size
());
i
++
)
{
if
(
i
==
(
size_t
)
dim_list
[
dim_list_index
])
{
s_Reduce
.
push_back
(
1
);
dim_list_index
++
;
}
else
{
s_Reduce
.
push_back
(
s
[
s_index
]);
s_index
++
;
}
if
(
cut
!=
g_device_manager
->
DeviceNum
())
{
s_Squeeze
.
clear
();
}
return
s_Reduce
;
return
s_Squeeze
;
}
std
::
vector
<
int32_t
>
CopyOutgoingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
size_t
iter_ops
)
{
std
::
vector
<
int32_t
>
s
;
if
(
ops
[
iter_ops
]
->
type
()
==
REDUCE_MAX
||
ops
[
iter_ops
]
->
type
()
==
REDUCE_MIN
||
ops
[
iter_ops
]
->
type
()
==
REDUCE_SUM
||
ops
[
iter_ops
]
->
type
()
==
REDUCE_MEAN
||
ops
[
iter_ops
]
->
type
()
==
RESHAPE
)
{
return
s
;
}
bool
found
=
false
;
for
(
size_t
i
=
0
;
i
<
(
size_t
)
input_tensor_names
.
size
();
i
++
)
{
for
(
size_t
j
=
1
;
j
<
(
size_t
)
input_tensor_names
[
i
].
size
();
j
++
)
{
if
(
input_tensor_names
[
i
][
j
]
==
input_tensor_names
[
iter_ops
][
0
])
{
for
(
size_t
k
=
0
;
k
<
ops
[
i
]
->
selected_strategy
()
->
GetInputDim
()[
j
-
1
].
size
();
++
k
)
{
s
.
push_back
(
ops
[
i
]
->
selected_strategy
()
->
GetInputDim
()[
j
-
1
][
k
]);
}
size_t
outgoing_op_index
=
SIZE_MAX
;
size_t
iter_op_inputs
=
SIZE_MAX
;
for
(
size_t
i
=
0
;
i
<
input_tensor_names
.
size
();
i
++
)
{
for
(
size_t
j
=
1
;
j
<
input_tensor_names
[
i
].
size
();
j
++
)
{
if
(
input_tensor_names
[
i
][
j
]
==
input_tensor_names
[
iter_ops
][
0
]
&&
ops
[
i
]
->
selected_strategy
()
->
GetInputNumber
()
!=
0
)
{
outgoing_op_index
=
i
;
iter_op_inputs
=
j
-
1
;
found
=
true
;
break
;
}
}
if
(
found
)
break
;
if
(
found
)
{
break
;
}
}
if
(
outgoing_op_index
!=
SIZE_MAX
&&
iter_op_inputs
!=
SIZE_MAX
)
{
for
(
size_t
k
=
0
;
k
<
ops
[
outgoing_op_index
]
->
selected_strategy
()
->
GetInputDim
()[
iter_op_inputs
].
size
();
++
k
)
{
s
.
push_back
(
ops
[
outgoing_op_index
]
->
selected_strategy
()
->
GetInputDim
()[
iter_op_inputs
][
k
]);
}
}
return
s
;
}
...
...
@@ -589,23 +560,70 @@ std::vector<int32_t> CopyOutgoingOperatorInputStrategy(const std::vector<std::sh
void
GenerateEliminatedOperatorStrategyBackward
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
)
{
MS_EXCEPTION_IF_NULL
(
no_stra_op_list
);
for
(
int
iter_list
=
no_stra_op_list
->
size
()
-
1
;
iter_list
>=
0
;
iter_list
--
)
{
auto
iter_ops
=
no_stra_op_list
->
at
(
iter_list
);
if
(
no_stra_op_list
->
size
()
==
0
)
{
return
;
}
std
::
vector
<
size_t
>
no_stra_op_list_bis
;
for
(
size_t
iter_list
=
no_stra_op_list
->
size
();
iter_list
>
0
;
iter_list
--
)
{
auto
iter_ops
=
no_stra_op_list
->
at
(
iter_list
-
1
);
std
::
vector
<
std
::
vector
<
int32_t
>>
stra
;
std
::
vector
<
int32_t
>
s
=
CopyOutgoingOperatorInputStrategy
(
ops
,
input_tensor_names
,
iter_ops
);
if
(
s
.
size
()
!=
0
&&
ops
[
iter_ops
]
->
type
()
==
SQUEEZE
)
{
s
=
ModifyStrategyIfSqueezeOutgoing
(
ops
,
iter_ops
,
s
);
}
if
(
s
.
size
()
!=
0
)
{
stra
=
GenerateStrategiesFromStrategy
(
ops
,
iter_ops
,
s
);
}
else
{
no_stra_op_list_bis
.
push_back
(
iter_ops
);
}
StrategyPtr
sp
=
std
::
make_shared
<
Strategy
>
(
0
,
stra
);
ops
[
iter_ops
]
->
SetSelectedStrategyAndCost
(
sp
,
ops
[
iter_ops
]
->
selected_cost
());
}
no_stra_op_list
->
clear
();
for
(
size_t
i
=
0
;
i
<
no_stra_op_list_bis
.
size
();
i
++
)
{
no_stra_op_list
->
push_back
(
no_stra_op_list_bis
[
i
]);
}
}
void
GenerateRemainingOperatorStrategy
(
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
)
{
if
(
no_stra_op_list
->
size
()
==
0
)
{
return
;
}
for
(
size_t
iter_list
=
no_stra_op_list
->
size
();
iter_list
>
0
;
iter_list
--
)
{
auto
iter_ops
=
no_stra_op_list
->
at
(
iter_list
-
1
);
std
::
vector
<
std
::
vector
<
int32_t
>>
stra
;
std
::
vector
<
int32_t
>
s
;
size_t
incoming_op_index
=
FindIndexOfOperatorIncoming
(
input_tensor_names
,
iter_ops
);
if
(
incoming_op_index
!=
SIZE_MAX
)
{
auto
iter_graph
=
index_list
->
at
(
incoming_op_index
);
if
(
iter_graph
!=
SIZE_MAX
)
{
s
=
CopyIncomingOperatorOutputStrategy
(
graph
,
ops
,
iter_ops
,
iter_graph
);
}
else
{
s
=
CopyIncomingOperatorInputStrategy
(
ops
,
iter_ops
,
incoming_op_index
);
}
}
if
(
s
.
size
()
==
0
)
{
for
(
size_t
i
=
0
;
i
<
ops
[
iter_ops
]
->
inputs_tensor_info
()[
0
].
shape
().
size
();
i
++
)
{
size_t
max_dim_num
=
0
;
for
(
size_t
iter_op_inputs
=
0
;
iter_op_inputs
<
ops
[
iter_ops
]
->
inputs_tensor_info
().
size
();
iter_op_inputs
++
)
{
if
(
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
().
size
()
>
max_dim_num
)
{
max_dim_num
=
ops
[
iter_ops
]
->
inputs_tensor_info
()[
iter_op_inputs
].
shape
().
size
();
}
}
for
(
size_t
i
=
0
;
i
<
max_dim_num
;
i
++
)
{
s
.
push_back
(
1
);
}
}
if
(
ops
[
iter_ops
]
->
type
()
==
SQUEEZE
)
{
s
=
ModifyStrategyIfSqueezeOutgoing
(
ops
,
iter_ops
,
s
);
}
if
(
ops
[
iter_ops
]
->
type
()
==
REDUCE_SUM
||
ops
[
iter_ops
]
->
type
()
==
REDUCE_MAX
||
ops
[
iter_ops
]
->
type
()
==
REDUCE_MIN
||
ops
[
iter_ops
]
->
type
()
==
REDUCE_MEAN
)
{
s
=
ModifyStrategyIfReduceOutgoing
(
ops
,
iter_ops
,
s
);
}
stra
=
GenerateStrategiesFromStrategy
(
ops
,
iter_ops
,
s
);
StrategyPtr
sp
=
std
::
make_shared
<
Strategy
>
(
0
,
stra
);
ops
[
iter_ops
]
->
SetSelectedStrategyAndCost
(
sp
,
ops
[
iter_ops
]
->
selected_cost
());
...
...
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_generate_strategy.h
浏览文件 @
2031710d
...
...
@@ -34,37 +34,38 @@ void GenerateStrategy(std::shared_ptr<Graph> graph, const std::vector<std::share
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareMatMul
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
);
std
::
vector
<
std
::
vector
<
int32_t
>>
Prepare
VirtualDataset
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
);
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareScalarInputOperator
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
std
::
vector
<
int32_t
>>
Prepare
PReLU
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
);
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareBiasAdd
(
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareOneHot
(
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
std
::
vector
<
int32_t
>>
MakeRecSearchStrategy
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
);
std
::
vector
<
std
::
vector
<
int32_t
>>
MakeDataParallelStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
);
std
::
vector
<
std
::
vector
<
int32_t
>>
MakeDataParallelStrategy
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
);
std
::
vector
<
std
::
vector
<
int32_t
>>
PrepareStrategy
(
const
std
::
shared_ptr
<
Graph
>
&
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_graph
,
const
size_t
iter_ops
);
void
GeneratePartitionedOperatorStrategy
(
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
);
int
FindIndexOfOperatorIncoming
(
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
size_t
iter_ops
);
size_t
FindIndexOfOperatorIncoming
(
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
size_t
iter_ops
);
std
::
vector
<
int32_t
>
CopyIncomingOperatorOutputStrategy
(
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
const
size_t
iter_graph
);
std
::
vector
<
int32_t
>
PrepareIncomingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
in
t
incoming_op_index
);
const
size_
t
incoming_op_index
);
std
::
vector
<
int32_t
>
GetAxisList
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
int
iter_ops
);
std
::
vector
<
int32_t
>
ModifyStrategyIfSqueezeIncoming
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
in
t
incoming_op_index
,
std
::
vector
<
int32_t
>
s
);
const
size_
t
incoming_op_index
,
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
int32_t
>
GetDimList
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
);
std
::
vector
<
int32_t
>
ModifyStrategyIfReduceIncoming
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
in
t
incoming_op_index
,
std
::
vector
<
int32_t
>
s
);
const
size_
t
incoming_op_index
,
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
int32_t
>
CopyIncomingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
int
incoming_op_index
,
const
size_t
iter_ops
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
);
const
size_t
iter_ops
,
const
size_t
incoming_op_index
);
std
::
vector
<
std
::
vector
<
int32_t
>>
GenerateStrategiesFromStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
);
void
GenerateEliminatedOperatorStrategyForward
(
std
::
shared_ptr
<
Graph
>
graph
,
...
...
@@ -75,14 +76,17 @@ void GenerateEliminatedOperatorStrategyForward(std::shared_ptr<Graph> graph,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
);
std
::
vector
<
int32_t
>
ModifyStrategyIfSqueezeOutgoing
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
int32_t
>
ModifyStrategyIfReduceOutgoing
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
size_t
iter_ops
,
std
::
vector
<
int32_t
>
s
);
std
::
vector
<
int32_t
>
CopyOutgoingOperatorInputStrategy
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
size_t
iter_ops
);
void
GenerateEliminatedOperatorStrategyBackward
(
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
);
void
GenerateRemainingOperatorStrategy
(
const
std
::
shared_ptr
<
Graph
>
graph
,
const
std
::
vector
<
std
::
shared_ptr
<
OperatorInfo
>>
&
ops
,
const
std
::
vector
<
std
::
vector
<
std
::
string
>>
&
input_tensor_names
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
index_list
,
const
std
::
shared_ptr
<
std
::
vector
<
size_t
>>
no_stra_op_list
);
}
// namespace parallel
}
// namespace mindspore
#endif // PARALLEL_AUTO_PARALLEL_REC_GENERATE_STRATEGY_H_
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_graph.h
浏览文件 @
2031710d
...
...
@@ -47,7 +47,8 @@ enum OperatorType {
kRecDiv
,
kRecSqueeze
,
kRecCast
,
kRecReduce
kRecReduce
,
kRecPReLU
};
enum
InfoType
{
kApplication
,
kConstant
};
...
...
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.cc
浏览文件 @
2031710d
...
...
@@ -199,7 +199,7 @@ std::shared_ptr<Graph> EliminateGraph(const std::shared_ptr<Graph> graph,
OperatorType
::
kRecOneHot
,
OperatorType
::
kRecReLU
,
OperatorType
::
kRecLog
,
OperatorType
::
kRecExp
,
OperatorType
::
kRecAdd
,
OperatorType
::
kRecElmWiseOp
,
OperatorType
::
kRecBiasAdd
,
OperatorType
::
kRecSub
,
OperatorType
::
kRecMul
,
OperatorType
::
kRecDiv
,
OperatorType
::
kRecSqueeze
,
OperatorType
::
kRecReduce
,
OperatorType
::
kRecCast
};
OperatorType
::
kRecCast
,
OperatorType
::
kRecReshape
};
for
(
size_t
node_index
=
0
;
node_index
<
(
size_t
)
graph
->
nodes
.
size
();
node_index
++
)
{
auto
type
=
graph
->
nodes
[
node_index
].
apply
.
op_type
;
if
(
type_list
.
find
(
type
)
!=
type_list
.
end
())
{
...
...
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_parse_graph.h
浏览文件 @
2031710d
...
...
@@ -55,7 +55,8 @@ const std::map<std::string, OperatorType> DictOpType{
{
"HSigmoid"
,
OperatorType
::
kRecReLU
},
{
GELU
,
OperatorType
::
kRecReLU
},
{
TANH
,
OperatorType
::
kRecReLU
},
{
PRELU
,
OperatorType
::
kRecReLU
},
{
PRELU
,
OperatorType
::
kRecPReLU
},
{
TENSOR_ADD
,
OperatorType
::
kRecElmWiseOp
},
{
SUB
,
OperatorType
::
kRecElmWiseOp
},
...
...
mindspore/ccsrc/parallel/auto_parallel/rec_core/rec_partition.cc
浏览文件 @
2031710d
...
...
@@ -83,7 +83,7 @@ double GetWeights(const Graph::NodeType &node) {
auto
cost_ptr
=
std
::
make_shared
<
CostCommon
>
();
return
cost_ptr
->
GetMinCostIn
();
}
else
if
(
op
.
op_type
==
OperatorType
::
kRecUnkownType
)
{
}
else
if
(
op
.
op_type
==
OperatorType
::
kRecUnkownType
||
op
.
op_type
==
OperatorType
::
kRecPReLU
)
{
// For unknown type
return
0.0
;
}
else
{
...
...
@@ -177,7 +177,7 @@ StrategyRec PartitionNode(const Graph::NodeType &node,
auto
cost_ptr
=
std
::
make_shared
<
CostCommon
>
();
return
cost_ptr
->
GetOptimalStr
(
node
,
node_name_to_strategy
,
*
graph
);
}
else
if
(
node
.
apply
.
op_type
==
OperatorType
::
kRecUnkownType
)
{
}
else
if
(
node
.
apply
.
op_type
==
OperatorType
::
kRecUnkownType
||
node
.
apply
.
op_type
==
OperatorType
::
kRecPReLU
)
{
// For unknown type
StrategyRec
default_strategy
;
return
default_strategy
;
...
...
mindspore/ccsrc/parallel/step_auto_parallel.cc
浏览文件 @
2031710d
...
...
@@ -464,6 +464,11 @@ Status ConstructCostGraphNodesByUniqueId(const std::vector<AnfNodePtr> &all_node
}
ValueNodePtr
prim_anf_node
=
cnode
->
input
(
0
)
->
cast
<
ValueNodePtr
>
();
if
(
!
IsAutoParallelCareNode
(
cnode
))
{
// Needed by rec_parser
PrimitivePtr
prim
=
GetValueNode
<
PrimitivePtr
>
(
prim_anf_node
);
if
(
prim
->
name
()
==
TUPLE_GETITEM
)
{
entire_costgraph
->
add_tuple_getitem
(
std
::
make_pair
(
cnode
->
UniqueId
(),
cnode
->
input
(
1
)
->
UniqueId
()));
}
continue
;
}
PrimitivePtr
prim
=
GetValueNode
<
PrimitivePtr
>
(
prim_anf_node
);
...
...
@@ -522,6 +527,11 @@ Status ConstructCostGraphNodesByUniqueIdTC(const std::vector<AnfNodePtr> &all_no
}
ValueNodePtr
prim_anf_node
=
cnode
->
input
(
0
)
->
cast
<
ValueNodePtr
>
();
if
(
!
IsAutoParallelCareNode
(
cnode
))
{
// Needed by rec_parser
PrimitivePtr
prim
=
GetValueNode
<
PrimitivePtr
>
(
prim_anf_node
);
if
(
prim
->
name
()
==
TUPLE_GETITEM
)
{
entire_costgraph
->
add_tuple_getitem
(
std
::
make_pair
(
cnode
->
UniqueId
(),
cnode
->
input
(
1
)
->
UniqueId
()));
}
continue
;
}
PrimitivePtr
prim
=
GetValueNode
<
PrimitivePtr
>
(
prim_anf_node
);
...
...
@@ -1153,6 +1163,7 @@ Status ParallelStrategyRecSearch(const std::vector<AnfNodePtr> &all_nodes, const
MS_LOG
(
ERROR
)
<<
"Constructing nodes for cost graph failed."
;
return
FAILED
;
}
auto
ops
=
entire_costgraph
->
GetOperators
();
std
::
vector
<
std
::
vector
<
std
::
string
>>
input_tensor_names
=
entire_costgraph
->
get_inputs_tensor_name_list
();
auto
tuple_getitem_list
=
entire_costgraph
->
get_tuple_getitem_list
();
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录