Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
1e88d64b
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1e88d64b
编写于
7月 23, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
7月 23, 2020
浏览文件
操作
浏览文件
下载
差异文件
!3259 add gpu cumsum op and reducemin
Merge pull request !3259 from baihuawei/automl
上级
366dd44c
4a8724e0
变更
8
显示空白变更内容
内联
并排
Showing
8 changed file
with
512 addition
and
0 deletion
+512
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/arrays/array_reduce_gpu_kernel.cc
...end/kernel_compiler/gpu/arrays/array_reduce_gpu_kernel.cc
+4
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/arrays/array_reduce_gpu_kernel.h
...kend/kernel_compiler/gpu/arrays/array_reduce_gpu_kernel.h
+1
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/cumsum_impl.cu
...csrc/backend/kernel_compiler/gpu/cuda_impl/cumsum_impl.cu
+50
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/cumsum_impl.cuh
...src/backend/kernel_compiler/gpu/cuda_impl/cumsum_impl.cuh
+22
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/math/cumsum_gpu_kernel.cc
...src/backend/kernel_compiler/gpu/math/cumsum_gpu_kernel.cc
+24
-0
mindspore/ccsrc/backend/kernel_compiler/gpu/math/cumsum_gpu_kernel.h
...csrc/backend/kernel_compiler/gpu/math/cumsum_gpu_kernel.h
+102
-0
tests/st/ops/gpu/test_cumsum_op.py
tests/st/ops/gpu/test_cumsum_op.py
+132
-0
tests/st/ops/gpu/test_reduce_min_op.py
tests/st/ops/gpu/test_reduce_min_op.py
+177
-0
未找到文件。
mindspore/ccsrc/backend/kernel_compiler/gpu/arrays/array_reduce_gpu_kernel.cc
浏览文件 @
1e88d64b
...
...
@@ -30,5 +30,9 @@ MS_REG_GPU_KERNEL_ONE(ReduceSum, KernelAttr().AddInputAttr(kNumberTypeFloat32).A
ArrayReduceGpuKernel
,
float
)
MS_REG_GPU_KERNEL_ONE
(
ReduceSum
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat16
).
AddOutputAttr
(
kNumberTypeFloat16
),
ArrayReduceGpuKernel
,
half
)
MS_REG_GPU_KERNEL_ONE
(
ReduceMin
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat32
).
AddOutputAttr
(
kNumberTypeFloat32
),
ArrayReduceGpuKernel
,
float
)
MS_REG_GPU_KERNEL_ONE
(
ReduceMin
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat16
).
AddOutputAttr
(
kNumberTypeFloat16
),
ArrayReduceGpuKernel
,
half
)
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/backend/kernel_compiler/gpu/arrays/array_reduce_gpu_kernel.h
浏览文件 @
1e88d64b
...
...
@@ -29,6 +29,7 @@ const std::map<std::string, cudnnReduceTensorOp_t> kReduceTypeMap = {
{
"ReduceMax"
,
CUDNN_REDUCE_TENSOR_MAX
},
{
"ReduceMean"
,
CUDNN_REDUCE_TENSOR_AVG
},
{
"ReduceSum"
,
CUDNN_REDUCE_TENSOR_ADD
},
{
"ReduceMin"
,
CUDNN_REDUCE_TENSOR_MIN
},
};
template
<
typename
T
>
class
ArrayReduceGpuKernel
:
public
GpuKernel
{
...
...
mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/cumsum_impl.cu
0 → 100644
浏览文件 @
1e88d64b
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "cumsum_impl.cuh"
#include "runtime/device/gpu/cuda_common.h"
template
<
typename
T
>
__global__
void
CumSumKernel
(
T
*
input
,
T
*
output
,
size_t
dim0
,
size_t
dim1
,
size_t
dim2
,
size_t
stride
,
size_t
stride2
)
{
size_t
num
=
dim0
*
dim2
;
size_t
i
,
k
,
offset
;
for
(
size_t
write_index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
write_index
<
num
;
write_index
+=
blockDim
.
x
*
gridDim
.
x
)
{
i
=
write_index
/
dim2
%
dim0
;
k
=
write_index
%
dim2
;
offset
=
i
*
stride
+
k
;
for
(
size_t
j
=
0
;
j
<
dim1
;
++
j
)
{
size_t
read_index
=
j
*
stride2
+
offset
;
if
(
j
==
0
)
{
output
[
read_index
]
=
input
[
read_index
];
}
else
{
size_t
read_index2
=
(
j
-
1
)
*
stride2
+
offset
;
output
[
read_index
]
=
output
[
read_index2
]
+
input
[
read_index
];
}
}
}
}
template
<
typename
T
>
void
CumSum
(
T
*
input
,
T
*
output
,
size_t
dim0
,
size_t
dim1
,
size_t
dim2
,
size_t
stride
,
size_t
stride2
,
cudaStream_t
stream
)
{
int
size
=
dim0
*
dim2
;
CumSumKernel
<<<
GET_BLOCKS
(
size
),
GET_THREADS
,
0
,
stream
>>>
(
input
,
output
,
dim0
,
dim1
,
dim2
,
stride
,
stride2
);
return
;
}
template
void
CumSum
<
float
>(
float
*
input
,
float
*
output
,
size_t
dim0
,
size_t
dim1
,
size_t
dim2
,
size_t
stride
,
size_t
stride2
,
cudaStream_t
stream
);
mindspore/ccsrc/backend/kernel_compiler/gpu/cuda_impl/cumsum_impl.cuh
0 → 100644
浏览文件 @
1e88d64b
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUMSUM_IMPL_CUH_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUMSUM_IMPL_CUH_
template
<
typename
T
>
void
CumSum
(
T
*
input
,
T
*
output
,
size_t
dim0
,
size_t
dim1
,
size_t
dim2
,
size_t
stride
,
size_t
stride2
,
cudaStream_t
stream
);
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUMSUM_IMPL_CUH_
mindspore/ccsrc/backend/kernel_compiler/gpu/math/cumsum_gpu_kernel.cc
0 → 100644
浏览文件 @
1e88d64b
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/kernel_compiler/gpu/math/cumsum_gpu_kernel.h"
namespace
mindspore
{
namespace
kernel
{
MS_REG_GPU_KERNEL_ONE
(
CumSum
,
KernelAttr
().
AddInputAttr
(
kNumberTypeFloat32
).
AddOutputAttr
(
kNumberTypeFloat32
),
CumSumGpuKernel
,
float
)
}
// namespace kernel
}
// namespace mindspore
mindspore/ccsrc/backend/kernel_compiler/gpu/math/cumsum_gpu_kernel.h
0 → 100644
浏览文件 @
1e88d64b
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUMSUM_GPU_KERNEL_H_
#define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUMSUM_GPU_KERNEL_H_
#include <vector>
#include "backend/kernel_compiler/gpu/gpu_kernel.h"
#include "backend/kernel_compiler/gpu/gpu_kernel_factory.h"
#include "backend/kernel_compiler/gpu/cuda_impl/cumsum_impl.cuh"
namespace
mindspore
{
namespace
kernel
{
template
<
typename
T
>
class
CumSumGpuKernel
:
public
GpuKernel
{
public:
CumSumGpuKernel
()
:
axis_
(
0
),
input_size_0_
(
0
),
stride_
(
0
),
stride2_
(
0
)
{}
~
CumSumGpuKernel
()
=
default
;
const
std
::
vector
<
size_t
>
&
GetInputSizeList
()
const
override
{
return
input_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetOutputSizeList
()
const
override
{
return
output_size_list_
;
}
const
std
::
vector
<
size_t
>
&
GetWorkspaceSizeList
()
const
override
{
return
workspace_size_list_
;
}
bool
Launch
(
const
std
::
vector
<
AddressPtr
>
&
inputs
,
const
std
::
vector
<
AddressPtr
>
&
workspace
,
const
std
::
vector
<
AddressPtr
>
&
outputs
,
void
*
stream_ptr
)
override
{
T
*
input_addr
=
GetDeviceAddress
<
T
>
(
inputs
,
0
);
T
*
output_addr
=
GetDeviceAddress
<
T
>
(
outputs
,
0
);
CumSum
(
input_addr
,
output_addr
,
dims_
[
0
],
dims_
[
1
],
dims_
[
2
],
stride_
,
stride2_
,
reinterpret_cast
<
cudaStream_t
>
(
stream_ptr
));
return
true
;
}
bool
Init
(
const
CNodePtr
&
kernel_node
)
override
{
size_t
input_num
=
AnfAlgo
::
GetInputTensorNum
(
kernel_node
);
if
(
input_num
!=
1
)
{
MS_LOG
(
EXCEPTION
)
<<
"Argument number is "
<<
input_num
<<
", but CumSumGpuKernel needs 1."
;
return
false
;
}
input_size_0_
=
sizeof
(
T
);
shape_
=
AnfAlgo
::
GetPrevNodeOutputInferShape
(
kernel_node
,
0
);
axis_
=
GetAttr
<
int
>
(
kernel_node
,
"axis"
);
int
input_dim_length
=
SizeToInt
(
shape_
.
size
());
if
(
axis_
>=
input_dim_length
)
{
MS_LOG
(
EXCEPTION
)
<<
"Axis out of bounds."
;
}
while
(
axis_
<
0
)
{
axis_
+=
input_dim_length
;
}
for
(
size_t
i
=
0
;
i
<
shape_
.
size
();
i
++
)
{
input_size_0_
*=
shape_
[
i
];
}
Reshape
();
InitSizeLists
();
return
true
;
}
protected:
void
InitSizeLists
()
override
{
input_size_list_
.
push_back
(
input_size_0_
);
output_size_list_
.
push_back
(
input_size_0_
);
}
private:
void
Reshape
()
{
dims_
[
0
]
=
1
;
dims_
[
1
]
=
shape_
[
IntToSize
(
axis_
)];
dims_
[
2
]
=
1
;
for
(
size_t
i
=
0
;
i
<
IntToSize
(
axis_
);
i
++
)
{
dims_
[
0
]
*=
shape_
[
i
];
}
for
(
size_t
i
=
IntToSize
(
axis_
)
+
1
;
i
<
shape_
.
size
();
i
++
)
{
dims_
[
2
]
*=
shape_
[
i
];
}
stride_
=
dims_
[
1
]
*
dims_
[
2
];
stride2_
=
dims_
[
2
];
return
;
}
int
axis_
;
size_t
input_size_0_
;
size_t
stride_
;
size_t
stride2_
;
size_t
dims_
[
3
]
=
{};
std
::
vector
<
size_t
>
shape_
;
std
::
vector
<
size_t
>
input_size_list_
;
std
::
vector
<
size_t
>
output_size_list_
;
std
::
vector
<
size_t
>
workspace_size_list_
;
};
}
// namespace kernel
}
// namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_CUMSUM_GPU_KERNEL_H_
tests/st/ops/gpu/test_cumsum_op.py
0 → 100644
浏览文件 @
1e88d64b
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import
numpy
as
np
import
pytest
import
mindspore.context
as
context
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore.common.api
import
ms_function
from
mindspore.ops
import
operations
as
P
x0
=
np
.
random
.
rand
(
2
,
3
,
4
,
4
).
astype
(
np
.
float32
)
axis0
=
3
x1
=
np
.
random
.
rand
(
2
,
3
,
4
,
4
).
astype
(
np
.
float32
)
axis1
=
3
x2
=
np
.
random
.
rand
(
2
,
3
,
1
,
4
).
astype
(
np
.
float32
)
axis2
=
2
x3
=
np
.
random
.
rand
(
2
,
3
,
1
,
4
).
astype
(
np
.
float32
)
axis3
=
2
x4
=
np
.
random
.
rand
(
2
,
3
,
4
,
4
).
astype
(
np
.
float32
)
axis4
=
1
x5
=
np
.
random
.
rand
(
2
,
3
).
astype
(
np
.
float32
)
axis5
=
1
x6
=
np
.
random
.
rand
(
1
,
1
,
1
,
1
).
astype
(
np
.
float32
)
axis6
=
0
context
.
set_context
(
device_target
=
'GPU'
)
class
CumSum
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
CumSum
,
self
).
__init__
()
self
.
x0
=
Tensor
(
x0
)
self
.
axis0
=
axis0
self
.
x1
=
Tensor
(
x1
)
self
.
axis1
=
axis1
self
.
x2
=
Tensor
(
x2
)
self
.
axis2
=
axis2
self
.
x3
=
Tensor
(
x3
)
self
.
axis3
=
axis3
self
.
x4
=
Tensor
(
x4
)
self
.
axis4
=
axis4
self
.
x5
=
Tensor
(
x5
)
self
.
axis5
=
axis5
self
.
x6
=
Tensor
(
x6
)
self
.
axis6
=
axis6
@
ms_function
def
construct
(
self
):
return
(
P
.
CumSum
()(
self
.
x0
,
self
.
axis0
),
P
.
CumSum
()(
self
.
x1
,
self
.
axis1
),
P
.
CumSum
()(
self
.
x2
,
self
.
axis2
),
P
.
CumSum
()(
self
.
x3
,
self
.
axis3
),
P
.
CumSum
()(
self
.
x4
,
self
.
axis4
),
P
.
CumSum
()(
self
.
x5
,
self
.
axis5
),
P
.
CumSum
()(
self
.
x6
,
self
.
axis6
))
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_CumSum
():
cumsum
=
CumSum
()
output
=
cumsum
()
expect0
=
np
.
cumsum
(
x0
,
axis
=
axis0
)
diff0
=
abs
(
output
[
0
].
asnumpy
()
-
expect0
)
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
output
[
0
].
shape
==
expect0
.
shape
expect1
=
np
.
cumsum
(
x1
,
axis
=
axis1
)
diff1
=
abs
(
output
[
1
].
asnumpy
()
-
expect1
)
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
output
[
1
].
shape
==
expect1
.
shape
expect2
=
np
.
cumsum
(
x2
,
axis
=
axis2
)
diff2
=
abs
(
output
[
2
].
asnumpy
()
-
expect2
)
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
output
[
2
].
shape
==
expect2
.
shape
expect3
=
np
.
cumsum
(
x3
,
axis
=
axis3
)
diff3
=
abs
(
output
[
3
].
asnumpy
()
-
expect3
)
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff3
<
error3
)
assert
output
[
3
].
shape
==
expect3
.
shape
expect4
=
np
.
cumsum
(
x4
,
axis
=
axis4
)
diff4
=
abs
(
output
[
4
].
asnumpy
()
-
expect4
)
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff4
<
error4
)
assert
output
[
4
].
shape
==
expect4
.
shape
expect5
=
np
.
cumsum
(
x5
,
axis
=
axis5
)
diff5
=
abs
(
output
[
5
].
asnumpy
()
-
expect5
)
error5
=
np
.
ones
(
shape
=
expect5
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff5
<
error5
)
assert
output
[
5
].
shape
==
expect5
.
shape
expect6
=
np
.
cumsum
(
x6
,
axis
=
axis6
)
diff6
=
abs
(
output
[
6
].
asnumpy
()
-
expect6
)
error6
=
np
.
ones
(
shape
=
expect6
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff6
<
error6
)
assert
output
[
6
].
shape
==
expect6
.
shape
tests/st/ops/gpu/test_reduce_min_op.py
0 → 100644
浏览文件 @
1e88d64b
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import
numpy
as
np
import
pytest
import
mindspore.context
as
context
import
mindspore.nn
as
nn
from
mindspore
import
Tensor
from
mindspore.common.api
import
ms_function
from
mindspore.ops
import
operations
as
P
x0
=
np
.
random
.
rand
(
2
,
3
,
4
,
4
).
astype
(
np
.
float32
)
axis0
=
3
keep_dims0
=
True
x1
=
np
.
random
.
rand
(
2
,
3
,
4
,
4
).
astype
(
np
.
float32
)
axis1
=
3
keep_dims1
=
False
x2
=
np
.
random
.
rand
(
2
,
3
,
1
,
4
).
astype
(
np
.
float32
)
axis2
=
2
keep_dims2
=
True
x3
=
np
.
random
.
rand
(
2
,
3
,
1
,
4
).
astype
(
np
.
float32
)
axis3
=
2
keep_dims3
=
False
x4
=
np
.
random
.
rand
(
2
,
3
,
4
,
4
).
astype
(
np
.
float32
)
axis4
=
()
np_axis4
=
None
keep_dims4
=
True
x5
=
np
.
random
.
rand
(
2
,
3
,
4
,
4
).
astype
(
np
.
float32
)
axis5
=
()
np_axis5
=
None
keep_dims5
=
False
x6
=
np
.
random
.
rand
(
2
,
3
,
4
,
4
).
astype
(
np
.
float32
)
axis6
=
-
2
keep_dims6
=
False
x7
=
np
.
random
.
rand
(
2
,
3
,
4
,
4
).
astype
(
np
.
float32
)
axis7
=
(
-
2
,
-
1
)
keep_dims7
=
True
x8
=
np
.
random
.
rand
(
1
,
1
,
1
,
1
).
astype
(
np
.
float32
)
axis8
=
()
np_axis8
=
None
keep_dims8
=
True
context
.
set_context
(
device_target
=
'GPU'
)
class
ReduceMin
(
nn
.
Cell
):
def
__init__
(
self
):
super
(
ReduceMin
,
self
).
__init__
()
self
.
x0
=
Tensor
(
x0
)
self
.
axis0
=
axis0
self
.
keep_dims0
=
keep_dims0
self
.
x1
=
Tensor
(
x1
)
self
.
axis1
=
axis1
self
.
keep_dims1
=
keep_dims1
self
.
x2
=
Tensor
(
x2
)
self
.
axis2
=
axis2
self
.
keep_dims2
=
keep_dims2
self
.
x3
=
Tensor
(
x3
)
self
.
axis3
=
axis3
self
.
keep_dims3
=
keep_dims3
self
.
x4
=
Tensor
(
x4
)
self
.
axis4
=
axis4
self
.
keep_dims4
=
keep_dims4
self
.
x5
=
Tensor
(
x5
)
self
.
axis5
=
axis5
self
.
keep_dims5
=
keep_dims5
self
.
x6
=
Tensor
(
x6
)
self
.
axis6
=
axis6
self
.
keep_dims6
=
keep_dims6
self
.
x7
=
Tensor
(
x7
)
self
.
axis7
=
axis7
self
.
keep_dims7
=
keep_dims7
self
.
x8
=
Tensor
(
x8
)
self
.
axis8
=
axis8
self
.
keep_dims8
=
keep_dims8
@
ms_function
def
construct
(
self
):
return
(
P
.
ReduceMin
(
self
.
keep_dims0
)(
self
.
x0
,
self
.
axis0
),
P
.
ReduceMin
(
self
.
keep_dims1
)(
self
.
x1
,
self
.
axis1
),
P
.
ReduceMin
(
self
.
keep_dims2
)(
self
.
x2
,
self
.
axis2
),
P
.
ReduceMin
(
self
.
keep_dims3
)(
self
.
x3
,
self
.
axis3
),
P
.
ReduceMin
(
self
.
keep_dims4
)(
self
.
x4
,
self
.
axis4
),
P
.
ReduceMin
(
self
.
keep_dims5
)(
self
.
x5
,
self
.
axis5
),
P
.
ReduceMin
(
self
.
keep_dims6
)(
self
.
x6
,
self
.
axis6
),
P
.
ReduceMin
(
self
.
keep_dims7
)(
self
.
x7
,
self
.
axis7
),
P
.
ReduceMin
(
self
.
keep_dims8
)(
self
.
x8
,
self
.
axis8
))
@
pytest
.
mark
.
level0
@
pytest
.
mark
.
platform_x86_gpu_training
@
pytest
.
mark
.
env_onecard
def
test_ReduceMin
():
reduce_min
=
ReduceMin
()
output
=
reduce_min
()
expect0
=
np
.
min
(
x0
,
axis
=
axis0
,
keepdims
=
keep_dims0
)
diff0
=
abs
(
output
[
0
].
asnumpy
()
-
expect0
)
error0
=
np
.
ones
(
shape
=
expect0
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff0
<
error0
)
assert
output
[
0
].
shape
==
expect0
.
shape
expect1
=
np
.
min
(
x1
,
axis
=
axis1
,
keepdims
=
keep_dims1
)
diff1
=
abs
(
output
[
1
].
asnumpy
()
-
expect1
)
error1
=
np
.
ones
(
shape
=
expect1
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff1
<
error1
)
assert
output
[
1
].
shape
==
expect1
.
shape
expect2
=
np
.
min
(
x2
,
axis
=
axis2
,
keepdims
=
keep_dims2
)
diff2
=
abs
(
output
[
2
].
asnumpy
()
-
expect2
)
error2
=
np
.
ones
(
shape
=
expect2
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff2
<
error2
)
assert
output
[
2
].
shape
==
expect2
.
shape
expect3
=
np
.
min
(
x3
,
axis
=
axis3
,
keepdims
=
keep_dims3
)
diff3
=
abs
(
output
[
3
].
asnumpy
()
-
expect3
)
error3
=
np
.
ones
(
shape
=
expect3
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff3
<
error3
)
assert
output
[
3
].
shape
==
expect3
.
shape
expect4
=
np
.
min
(
x4
,
axis
=
np_axis4
,
keepdims
=
keep_dims4
)
diff4
=
abs
(
output
[
4
].
asnumpy
()
-
expect4
)
error4
=
np
.
ones
(
shape
=
expect4
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff4
<
error4
)
assert
output
[
4
].
shape
==
expect4
.
shape
expect5
=
np
.
min
(
x5
,
axis
=
np_axis5
,
keepdims
=
keep_dims5
)
diff5
=
abs
(
output
[
5
].
asnumpy
()
-
expect5
)
error5
=
np
.
ones
(
shape
=
expect5
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff5
<
error5
)
assert
output
[
5
].
shape
==
expect5
.
shape
expect6
=
np
.
min
(
x6
,
axis
=
axis6
,
keepdims
=
keep_dims6
)
diff6
=
abs
(
output
[
6
].
asnumpy
()
-
expect6
)
error6
=
np
.
ones
(
shape
=
expect6
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff6
<
error6
)
assert
output
[
6
].
shape
==
expect6
.
shape
expect7
=
np
.
min
(
x7
,
axis
=
axis7
,
keepdims
=
keep_dims7
)
diff7
=
abs
(
output
[
7
].
asnumpy
()
-
expect7
)
error7
=
np
.
ones
(
shape
=
expect7
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff7
<
error7
)
expect8
=
np
.
min
(
x8
,
axis
=
np_axis8
,
keepdims
=
keep_dims8
)
diff8
=
abs
(
output
[
8
].
asnumpy
()
-
expect8
)
error8
=
np
.
ones
(
shape
=
expect8
.
shape
)
*
1.0e-5
assert
np
.
all
(
diff8
<
error8
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录