diff --git a/tests/st/control/test_ascend_control_sink.py b/tests/st/control/test_ascend_control_sink.py new file mode 100644 index 0000000000000000000000000000000000000000..2c206c97684ced209d121a9a7c91520e21d25057 --- /dev/null +++ b/tests/st/control/test_ascend_control_sink.py @@ -0,0 +1,189 @@ +# Copyright 2020 Huawei Technologies Co., Ltd +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +# ============================================================================ +""" test_ascend_control_sink """ +import pytest +import numpy as np +import mindspore.context as context +import mindspore.nn as nn +from mindspore.ops import operations as op +from mindspore.common import dtype as mstype +from mindspore.common.tensor import Tensor +from mindspore.common.parameter import Parameter +from mindspore.common.initializer import initializer + + +class ControlSimpleIf(nn.Cell): + def __init__(self): + super().__init__() + self.addn = op.AddN() + + def construct(self, x, y, z, input1, input2): + addn1 = self.addn([input1, input1, input1]) + addn2 = self.addn([input2, input2, input2]) + addn11 = self.addn([addn1, addn1, addn1]) + addn22 = self.addn([addn2, addn2, addn2]) + cond1 = x > y + cond2 = y > z + # dodge pylint + if cond1 and cond2: + out = self.addn([addn11, addn11]) + else: + out = self.addn([addn22, addn22]) + out_me = self.addn([out, input1]) + return out_me + + +class ControlSimpleIfWithAssign(nn.Cell): + def __init__(self, input_shape): + super().__init__() + self.addn = op.AddN() + self.assign = op.Assign() + self.input_data = Parameter(initializer(1, input_shape, mstype.float32), name="var") + + def construct(self, x, y, input_data): + if x > y: + out = self.addn([input_data, input_data, input_data]) + else: + out = self.assign(self.input_data, input_data) + return out + + +class ControlIfinIf(nn.Cell): + def __init__(self): + super().__init__() + + def construct(self, x, y): + if x > y: + x = x + 1 + if y < 0: + y = y + 1 + else: + y = y + 2 + else: + x = x + 2 + x = x + y + return x + + +class ControlIfbyIfbyIf(nn.Cell): + def __init__(self): + super().__init__() + self.addn = op.AddN() + + def construct(self, x, y, cond1, cond2, input_data): + tri_in = self.addn([input_data, input_data, input_data]) + if x > y: + addn_1 = self.addn([tri_in, tri_in]) + else: + addn_1 = self.addn([tri_in, tri_in, tri_in]) + if cond1: + addn_2 = self.addn([addn_1, addn_1]) + else: + addn_2 = self.addn([addn_1, addn_1, addn_1]) + if cond2: + out = self.addn([addn_2, addn_2, addn_2]) + else: + out = self.addn([addn_2, addn_2]) + return out + + +class ControlMixedWhileIf(nn.Cell): + def __init__(self): + super().__init__() + + def construct(self, x, y): + y = y + 4 + while x < y: + if 2 * x < y: + x = x + 1 + else: + x = x + 2 + x = x + 3 + return x + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_simple_if(): + context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + x = np.array(3).astype(np.float32) + y = np.array(2).astype(np.float32) + z = np.array(3).astype(np.float32) + input_shape = (127, 7, 53, 31) + input1 = np.random.randn(*input_shape).astype(np.float32) + input2 = np.random.randn(*input_shape).astype(np.float32) + net = ControlSimpleIf() + output = net(Tensor(x), Tensor(y), Tensor(z), Tensor(input1), Tensor(input2)) + expect = input2 * 3 * 3 * 2 + input1 + assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_simple_if_with_assign(): + context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + x = np.array(0).astype(np.float32) + y = np.array(1).astype(np.float32) + input_shape = (127, 7, 53, 31) + input_data = np.random.randn(*input_shape).astype(np.float32) + net = ControlSimpleIfWithAssign(input_shape) + output = net(Tensor(x), Tensor(y), Tensor(input_data)) + expect = input_data + assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_if_in_if(): + context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + x = np.array(2.345678).astype(np.float32) + y = np.array(1.234567).astype(np.float32) + net = ControlIfinIf() + output = net(Tensor(x), Tensor(y)) + expect = x + y + 3 + assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_if_by_if_by_if(): + context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + x = np.array(2.345678).astype(np.float32) + y = np.array(1.234567).astype(np.float32) + cond1 = np.array(True).astype(np.bool) + cond2 = np.array(False).astype(np.bool) + input_shape = (127, 7, 53, 31) + input_data = np.random.randn(*input_shape).astype(np.float32) + net = ControlIfbyIfbyIf() + output = net(Tensor(x), Tensor(y), Tensor(cond1), Tensor(cond2), Tensor(input_data)) + expect = input_data * 3 * 2 * 2 * 2 + assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) + +@pytest.mark.level0 +@pytest.mark.platform_arm_ascend_training +@pytest.mark.platform_x86_ascend_training +@pytest.mark.env_onecard +def test_mixed_while_if(): + context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") + x = np.array(2).astype(np.int32) + y = np.array(14).astype(np.int32) + net = ControlMixedWhileIf() + output = net(Tensor(x), Tensor(y)) + expect = np.array(22).astype(np.int32) + assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001)