Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
12d9c71c
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
12d9c71c
编写于
5月 21, 2020
作者:
Y
yoonlee666
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
delete dropout when prob equals 0 and adjust bert ci script
上级
2224fa09
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
20 addition
and
14 deletion
+20
-14
example/bert_clue/dataset.py
example/bert_clue/dataset.py
+2
-2
example/bert_clue/run_pretrain.py
example/bert_clue/run_pretrain.py
+6
-5
mindspore/nn/layer/basic.py
mindspore/nn/layer/basic.py
+3
-0
tests/st/networks/models/bert/bert_tdt_lossscale.py
tests/st/networks/models/bert/bert_tdt_lossscale.py
+9
-7
未找到文件。
example/bert_clue/dataset.py
浏览文件 @
12d9c71c
...
...
@@ -42,7 +42,7 @@ def create_bert_dataset(epoch_size=1, device_num=1, rank=0, do_shuffle="true", e
if
enable_data_sink
==
"true"
:
new_size
=
data_sink_steps
*
bert_net_cfg
.
batch_size
ds
.
set_dataset_size
(
new_size
)
repeat_count
=
int
(
repeat_count
*
ori_dataset_size
//
ds
.
get_dataset_size
())
new_
repeat_count
=
int
(
repeat_count
*
ori_dataset_size
//
ds
.
get_dataset_size
())
type_cast_op
=
C
.
TypeCast
(
mstype
.
int32
)
ds
=
ds
.
map
(
input_columns
=
"masked_lm_ids"
,
operations
=
type_cast_op
)
ds
=
ds
.
map
(
input_columns
=
"masked_lm_positions"
,
operations
=
type_cast_op
)
...
...
@@ -55,4 +55,4 @@ def create_bert_dataset(epoch_size=1, device_num=1, rank=0, do_shuffle="true", e
ds
=
ds
.
repeat
(
repeat_count
)
logger
.
info
(
"data size: {}"
.
format
(
ds
.
get_dataset_size
()))
logger
.
info
(
"repeatcount: {}"
.
format
(
ds
.
get_repeat_count
()))
return
ds
return
ds
,
new_repeat_count
example/bert_clue/run_pretrain.py
浏览文件 @
12d9c71c
...
...
@@ -24,7 +24,7 @@ from mindspore import context
from
mindspore.train.model
import
Model
from
mindspore.train.parallel_utils
import
ParallelMode
from
mindspore.nn.wrap.loss_scale
import
DynamicLossScaleUpdateCell
from
mindspore.train.callback
import
Callback
,
ModelCheckpoint
,
CheckpointConfig
from
mindspore.train.callback
import
Callback
,
ModelCheckpoint
,
CheckpointConfig
,
TimeMonitor
from
mindspore.train.serialization
import
load_checkpoint
,
load_param_into_net
from
mindspore.model_zoo.Bert_NEZHA
import
BertNetworkWithLoss
,
BertTrainOneStepCell
,
BertTrainOneStepWithLossScaleCell
from
mindspore.nn.optim
import
Lamb
,
Momentum
,
AdamWeightDecayDynamicLR
...
...
@@ -87,8 +87,9 @@ def run_pretrain():
rank
=
0
device_num
=
1
ds
=
create_bert_dataset
(
args_opt
.
epoch_size
,
device_num
,
rank
,
args_opt
.
do_shuffle
,
args_opt
.
enable_data_sink
,
args_opt
.
data_sink_steps
,
args_opt
.
data_dir
,
args_opt
.
schema_dir
)
ds
,
new_repeat_count
=
create_bert_dataset
(
args_opt
.
epoch_size
,
device_num
,
rank
,
args_opt
.
do_shuffle
,
args_opt
.
enable_data_sink
,
args_opt
.
data_sink_steps
,
args_opt
.
data_dir
,
args_opt
.
schema_dir
)
netwithloss
=
BertNetworkWithLoss
(
bert_net_cfg
,
True
)
...
...
@@ -112,7 +113,7 @@ def run_pretrain():
else
:
raise
ValueError
(
"Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecayDynamicLR]"
.
format
(
cfg
.
optimizer
))
callback
=
[
LossCallBack
()]
callback
=
[
TimeMonitor
(
ds
.
get_dataset_size
()),
LossCallBack
()]
if
args_opt
.
enable_save_ckpt
==
"true"
:
config_ck
=
CheckpointConfig
(
save_checkpoint_steps
=
args_opt
.
save_checkpoint_steps
,
keep_checkpoint_max
=
args_opt
.
save_checkpoint_num
)
...
...
@@ -133,6 +134,6 @@ def run_pretrain():
netwithgrads
=
BertTrainOneStepCell
(
netwithloss
,
optimizer
=
optimizer
)
model
=
Model
(
netwithgrads
)
model
.
train
(
ds
.
get_repeat_count
()
,
ds
,
callbacks
=
callback
,
dataset_sink_mode
=
(
args_opt
.
enable_data_sink
==
"true"
))
model
.
train
(
new_repeat_count
,
ds
,
callbacks
=
callback
,
dataset_sink_mode
=
(
args_opt
.
enable_data_sink
==
"true"
))
if
__name__
==
'__main__'
:
run_pretrain
()
mindspore/nn/layer/basic.py
浏览文件 @
12d9c71c
...
...
@@ -99,6 +99,9 @@ class Dropout(Cell):
out
,
_
=
self
.
dropout
(
x
)
return
out
if
self
.
keep_prob
==
1
:
return
x
shape
=
self
.
get_shape
(
x
)
dtype
=
P
.
DType
()(
x
)
keep_prob
=
self
.
cast
(
self
.
keep_prob
,
dtype
)
...
...
tests/st/networks/models/bert/bert_tdt_lossscale.py
浏览文件 @
12d9c71c
...
...
@@ -26,7 +26,7 @@ from mindspore import context
from
mindspore
import
log
as
logger
from
mindspore.common.tensor
import
Tensor
from
mindspore.model_zoo.Bert_NEZHA
import
BertConfig
,
BertNetworkWithLoss
,
BertTrainOneStepWithLossScaleCell
from
mindspore.nn.optim
import
Momentum
from
mindspore.nn.optim
import
Lamb
from
mindspore.train.callback
import
Callback
from
mindspore.train.loss_scale_manager
import
DynamicLossScaleManager
from
mindspore.train.model
import
Model
...
...
@@ -73,7 +73,7 @@ def get_config(version='base', batch_size=1):
max_position_embeddings
=
512
,
type_vocab_size
=
2
,
initializer_range
=
0.02
,
use_relative_positions
=
Tru
e
,
use_relative_positions
=
Fals
e
,
input_mask_from_dataset
=
True
,
token_type_ids_from_dataset
=
True
,
dtype
=
mstype
.
float32
,
...
...
@@ -138,7 +138,9 @@ def test_bert_tdt():
batch_size
=
int
(
os
.
getenv
(
'BATCH_SIZE'
,
'16'
))
config
=
get_config
(
version
=
version
,
batch_size
=
batch_size
)
netwithloss
=
BertNetworkWithLoss
(
config
,
True
)
optimizer
=
Momentum
(
netwithloss
.
trainable_params
(),
learning_rate
=
2e-5
,
momentum
=
0.9
)
optimizer
=
Lamb
(
netwithloss
.
trainable_params
(),
decay_steps
=
ds
.
get_dataset_size
()
*
ds
.
get_repeat_count
(),
start_learning_rate
=
5e-5
,
end_learning_rate
=
1e-9
,
power
=
10.0
,
warmup_steps
=
0
,
weight_decay
=
0.01
)
scale_window
=
3
scale_manager
=
DynamicLossScaleManager
(
2
**
16
,
2
,
scale_window
)
netwithgrads
=
BertTrainOneStepWithLossScaleCell
(
netwithloss
,
optimizer
=
optimizer
,
...
...
@@ -169,10 +171,10 @@ def test_bert_tdt():
# assertion occurs while the loss value, overflow state or loss_scale value is wrong
loss_value
=
np
.
array
(
callback
.
loss_list
)
expect_loss_value
=
[
12.
191826
,
11.966009
,
11.972208
,
11.98216
,
11.973932
,
12.611078
,
12.17554
,
12.840299
,
12.
403329
,
12.621632
]
expect_loss_value
=
[
12.
207201
,
11.980862
,
11.984737
,
11.879344
,
11.832838
,
12.411388
,
12.
009449
,
12.621273
,
12.223175
,
12.427313
]
print
(
"loss value: {}"
.
format
(
loss_value
))
assert
np
.
allclose
(
loss_value
,
expect_loss_value
,
0
.00001
,
0.00001
)
assert
np
.
allclose
(
loss_value
,
expect_loss_value
,
0
,
0.0005
)
overflow
=
np
.
array
(
callback
.
overflow_list
)
expect_overflow
=
[
True
,
True
,
False
,
False
,
False
,
True
,
False
,
False
,
False
,
True
]
...
...
@@ -182,7 +184,7 @@ def test_bert_tdt():
loss_scale
=
np
.
array
(
callback
.
lossscale_list
)
expect_loss_scale
=
[
32768.0
,
16384.0
,
16384.0
,
16384.0
,
32768.0
,
16384.0
,
16384.0
,
16384.0
,
32768.0
,
16384.0
]
print
(
"loss scale: {}"
.
format
(
loss_scale
))
assert
np
.
allclose
(
loss_scale
,
expect_loss_scale
,
0
.00001
,
0.00001
)
assert
np
.
allclose
(
loss_scale
,
expect_loss_scale
,
0
,
0
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录