提交 1227719c 编写于 作者: M mindspore-ci-bot 提交者: Gitee

!2603 [Dataset Python UT] Cleanup mse and md5 validation

Merge pull request !2603 from TinaMengtingZhang/I1LTCA-mse-check-cleanup
......@@ -20,7 +20,7 @@ import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, diff_mse
DATA_DIR = "../data/dataset/testImageNetData/train/"
......@@ -75,7 +75,7 @@ def test_auto_contrast(plot=False):
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = np.mean((images_auto_contrast[i] - images_original[i]) ** 2)
mse[i] = diff_mse(images_auto_contrast[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
......
......@@ -21,11 +21,13 @@ import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c
import mindspore.dataset.transforms.vision.py_transforms as f
from mindspore import log as logger
from util import visualize_image, diff_mse
from util import visualize_image, visualize_list, diff_mse, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def test_cut_out_op(plot=False):
"""
......@@ -34,7 +36,7 @@ def test_cut_out_op(plot=False):
logger.info("test_cut_out")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms_1 = [
f.Decode(),
......@@ -45,7 +47,7 @@ def test_cut_out_op(plot=False):
data1 = data1.map(input_columns=["image"], operations=transform_1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c.Decode()
cut_out_op = c.CutOut(80)
......@@ -74,25 +76,24 @@ def test_cut_out_op(plot=False):
visualize_image(image_1, image_2, mse)
def test_cut_out_op_multicut():
def test_cut_out_op_multicut(plot=False):
"""
Test Cutout
"""
logger.info("test_cut_out")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms_1 = [
f.Decode(),
f.ToTensor(),
f.RandomErasing(value='random')
]
transform_1 = f.ComposeOp(transforms_1)
data1 = data1.map(input_columns=["image"], operations=transform_1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"])
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c.Decode()
cut_out_op = c.CutOut(80, num_patches=10)
......@@ -104,19 +105,107 @@ def test_cut_out_op_multicut():
data2 = data2.map(input_columns=["image"], operations=transforms_2)
num_iter = 0
image_list_1, image_list_2 = [], []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
num_iter += 1
image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
# C image doesn't require transpose
image_2 = item2["image"]
image_list_1.append(image_1)
image_list_2.append(image_2)
logger.info("shape of image_1: {}".format(image_1.shape))
logger.info("shape of image_2: {}".format(image_2.shape))
logger.info("dtype of image_1: {}".format(image_1.dtype))
logger.info("dtype of image_2: {}".format(image_2.dtype))
if plot:
visualize_list(image_list_1, image_list_2)
def test_cut_out_md5():
"""
Test Cutout with md5 check
"""
logger.info("test_cut_out_md5")
original_seed = config_get_set_seed(2)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c.Decode()
cut_out_op = c.CutOut(100)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=cut_out_op)
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
f.Decode(),
f.ToTensor(),
f.Cutout(100)
]
transform = f.ComposeOp(transforms)
data2 = data2.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename1 = "cut_out_01_c_result.npz"
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
filename2 = "cut_out_01_py_result.npz"
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
# Restore config
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_cut_out_comp(plot=False):
"""
Test Cutout with c++ and python op comparison
"""
logger.info("test_cut_out_comp")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms_1 = [
f.Decode(),
f.ToTensor(),
f.Cutout(200)
]
transform_1 = f.ComposeOp(transforms_1)
data1 = data1.map(input_columns=["image"], operations=transform_1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms_2 = [
c.Decode(),
c.CutOut(200)
]
data2 = data2.map(input_columns=["image"], operations=transforms_2)
num_iter = 0
image_list_1, image_list_2 = [], []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
num_iter += 1
image_1 = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
# C image doesn't require transpose
image_2 = item2["image"]
image_list_1.append(image_1)
image_list_2.append(image_2)
logger.info("shape of image_1: {}".format(image_1.shape))
logger.info("shape of image_2: {}".format(image_2.shape))
logger.info("dtype of image_1: {}".format(image_1.dtype))
logger.info("dtype of image_2: {}".format(image_2.dtype))
if plot:
visualize_list(image_list_1, image_list_2, visualize_mode=2)
if __name__ == "__main__":
test_cut_out_op(plot=True)
test_cut_out_op_multicut()
test_cut_out_op_multicut(plot=True)
test_cut_out_md5()
test_cut_out_comp(plot=True)
......@@ -20,10 +20,11 @@ import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, diff_mse, save_and_check_md5
DATA_DIR = "../data/dataset/testImageNetData/train/"
GENERATE_GOLDEN = False
def test_equalize(plot=False):
"""
......@@ -75,12 +76,31 @@ def test_equalize(plot=False):
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = np.mean((images_equalize[i] - images_original[i]) ** 2)
mse[i] = diff_mse(images_equalize[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
visualize_list(images_original, images_equalize)
def test_equalize_md5():
"""
Test Equalize with md5 check
"""
logger.info("Test Equalize")
# First dataset
data1 = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms = F.ComposeOp([F.Decode(),
F.Equalize(),
F.ToTensor()])
data1 = data1.map(input_columns="image", operations=transforms())
# Compare with expected md5 from images
filename = "equalize_01_result.npz"
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_equalize(plot=True)
test_equalize_md5()
......@@ -20,11 +20,12 @@ import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as vision
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, save_and_check_md5
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def test_five_crop_op(plot=False):
"""
......@@ -63,7 +64,7 @@ def test_five_crop_op(plot=False):
logger.info("dtype of image_1: {}".format(image_1.dtype))
logger.info("dtype of image_2: {}".format(image_2.dtype))
if plot:
visualize_list(np.array([image_1]*10), (image_2 * 255).astype(np.uint8).transpose(0, 2, 3, 1))
visualize_list(np.array([image_1]*5), (image_2 * 255).astype(np.uint8).transpose(0, 2, 3, 1))
# The output data should be of a 4D tensor shape, a stack of 5 images.
assert len(image_2.shape) == 4
......@@ -93,6 +94,27 @@ def test_five_crop_error_msg():
assert error_msg in str(info.value)
def test_five_crop_md5():
"""
Test FiveCrop with md5 check
"""
logger.info("test_five_crop_md5")
# First dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms = [
vision.Decode(),
vision.FiveCrop(100),
lambda images: np.stack([vision.ToTensor()(image) for image in images]) # 4D stack of 5 images
]
transform = vision.ComposeOp(transforms)
data = data.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename = "five_crop_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_five_crop_op(plot=True)
test_five_crop_error_msg()
test_five_crop_md5()
......@@ -20,10 +20,11 @@ import numpy as np
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, save_and_check_md5
DATA_DIR = "../data/dataset/testImageNetData/train/"
GENERATE_GOLDEN = False
def test_invert(plot=False):
"""
......@@ -82,5 +83,25 @@ def test_invert(plot=False):
visualize_list(images_original, images_invert)
def test_invert_md5():
"""
Test Invert with md5 check
"""
logger.info("Test Invert with md5 check")
# Generate dataset
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_invert = F.ComposeOp([F.Decode(),
F.Invert(),
F.ToTensor()])
data = ds.map(input_columns="image", operations=transforms_invert())
# Compare with expected md5 from images
filename = "invert_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_invert(plot=True)
test_invert_md5()
......@@ -73,12 +73,12 @@ def test_linear_transformation_op(plot=False):
if plot:
visualize_list(image, image_transformed)
def test_linear_transformation_md5_01():
def test_linear_transformation_md5():
"""
Test LinearTransformation op: valid params (transformation_matrix, mean_vector)
Expected to pass
"""
logger.info("test_linear_transformation_md5_01")
logger.info("test_linear_transformation_md5")
# Initialize parameters
height = 50
......@@ -102,12 +102,12 @@ def test_linear_transformation_md5_01():
filename = "linear_transformation_01_result.npz"
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
def test_linear_transformation_md5_02():
def test_linear_transformation_exception_01():
"""
Test LinearTransformation op: transformation_matrix is not provided
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_02")
logger.info("test_linear_transformation_exception_01")
# Initialize parameters
height = 50
......@@ -130,12 +130,12 @@ def test_linear_transformation_md5_02():
logger.info("Got an exception in DE: {}".format(str(e)))
assert "not provided" in str(e)
def test_linear_transformation_md5_03():
def test_linear_transformation_exception_02():
"""
Test LinearTransformation op: mean_vector is not provided
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_03")
logger.info("test_linear_transformation_exception_02")
# Initialize parameters
height = 50
......@@ -158,12 +158,12 @@ def test_linear_transformation_md5_03():
logger.info("Got an exception in DE: {}".format(str(e)))
assert "not provided" in str(e)
def test_linear_transformation_md5_04():
def test_linear_transformation_exception_03():
"""
Test LinearTransformation op: transformation_matrix is not a square matrix
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_04")
logger.info("test_linear_transformation_exception_03")
# Initialize parameters
height = 50
......@@ -187,12 +187,12 @@ def test_linear_transformation_md5_04():
logger.info("Got an exception in DE: {}".format(str(e)))
assert "square matrix" in str(e)
def test_linear_transformation_md5_05():
def test_linear_transformation_exception_04():
"""
Test LinearTransformation op: mean_vector does not match dimension of transformation_matrix
Expected to raise ValueError
"""
logger.info("test_linear_transformation_md5_05")
logger.info("test_linear_transformation_exception_04")
# Initialize parameters
height = 50
......@@ -217,9 +217,9 @@ def test_linear_transformation_md5_05():
assert "should match" in str(e)
if __name__ == '__main__':
test_linear_transformation_op(True)
test_linear_transformation_md5_01()
test_linear_transformation_md5_02()
test_linear_transformation_md5_03()
test_linear_transformation_md5_04()
test_linear_transformation_md5_05()
test_linear_transformation_op(plot=True)
test_linear_transformation_md5()
test_linear_transformation_exception_01()
test_linear_transformation_exception_02()
test_linear_transformation_exception_03()
test_linear_transformation_exception_04()
......@@ -21,11 +21,12 @@ import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import diff_mse
from util import diff_mse, save_and_check_md5
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def test_pad_op():
"""
......@@ -116,6 +117,39 @@ def test_pad_grayscale():
assert shape1[0:1] == shape2[0:1]
def test_pad_md5():
"""
Test Pad with md5 check
"""
logger.info("test_pad_md5")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
pad_op = c_vision.Pad(150)
ctrans = [decode_op,
pad_op,
]
data1 = data1.map(input_columns=["image"], operations=ctrans)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
pytrans = [
py_vision.Decode(),
py_vision.Pad(150),
py_vision.ToTensor(),
]
transform = py_vision.ComposeOp(pytrans)
data2 = data2.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename1 = "pad_01_c_result.npz"
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
filename2 = "pad_01_py_result.npz"
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_pad_op()
test_pad_grayscale()
test_pad_md5()
......@@ -17,13 +17,16 @@ Testing RandomColor op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, diff_mse, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = "../data/dataset/testImageNetData/train/"
GENERATE_GOLDEN = False
def test_random_color(degrees=(0.1, 1.9), plot=False):
"""
......@@ -32,13 +35,13 @@ def test_random_color(degrees=(0.1, 1.9), plot=False):
logger.info("Test RandomColor")
# Original Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.ToTensor()])
ds_original = ds.map(input_columns="image",
ds_original = data.map(input_columns="image",
operations=transforms_original())
ds_original = ds_original.batch(512)
......@@ -52,14 +55,14 @@ def test_random_color(degrees=(0.1, 1.9), plot=False):
axis=0)
# Random Color Adjusted Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_random_color = F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.RandomColor(degrees=degrees),
F.ToTensor()])
ds_random_color = ds.map(input_columns="image",
ds_random_color = data.map(input_columns="image",
operations=transforms_random_color())
ds_random_color = ds_random_color.batch(512)
......@@ -75,14 +78,40 @@ def test_random_color(degrees=(0.1, 1.9), plot=False):
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = np.mean((images_random_color[i] - images_original[i]) ** 2)
mse[i] = diff_mse(images_random_color[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
visualize_list(images_original, images_random_color)
def test_random_color_md5():
"""
Test RandomColor with md5 check
"""
logger.info("Test RandomColor with md5 check")
original_seed = config_get_set_seed(10)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Generate dataset
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms = F.ComposeOp([F.Decode(),
F.RandomColor((0.5, 1.5)),
F.ToTensor()])
data = data.map(input_columns="image", operations=transforms())
# Compare with expected md5 from images
filename = "random_color_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers((original_num_parallel_workers))
if __name__ == "__main__":
test_random_color()
test_random_color(plot=True)
test_random_color(degrees=(0.5, 1.5), plot=True)
test_random_color_md5()
......@@ -22,11 +22,13 @@ import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore import log as logger
from util import diff_mse, visualize_image
from util import diff_mse, visualize_image, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def util_test_random_color_adjust_error(brightness=(1, 1), contrast=(1, 1), saturation=(1, 1), hue=(0, 0)):
"""
......@@ -188,6 +190,41 @@ def test_random_color_adjust_op_hue_error():
util_test_random_color_adjust_error(hue=(0.5, 0.5))
def test_random_color_adjust_md5():
"""
Test RandomColorAdjust with md5 check
"""
logger.info("Test RandomColorAdjust with md5 check")
original_seed = config_get_set_seed(10)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
random_adjust_op = c_vision.RandomColorAdjust(0.4, 0.4, 0.4, 0.1)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_adjust_op)
# Second dataset
transforms = [
py_vision.Decode(),
py_vision.RandomColorAdjust(0.4, 0.4, 0.4, 0.1),
py_vision.ToTensor()
]
transform = py_vision.ComposeOp(transforms)
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
data2 = data2.map(input_columns=["image"], operations=transform())
# Compare with expected md5 from images
filename = "random_color_adjust_01_c_result.npz"
save_and_check_md5(data1, filename, generate_golden=GENERATE_GOLDEN)
filename = "random_color_adjust_01_py_result.npz"
save_and_check_md5(data2, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
if __name__ == "__main__":
test_random_color_adjust_op_brightness(plot=True)
test_random_color_adjust_op_brightness_error()
......@@ -197,3 +234,4 @@ if __name__ == "__main__":
test_random_color_adjust_op_saturation_error()
test_random_color_adjust_op_hue(plot=True)
test_random_color_adjust_op_hue_error()
test_random_color_adjust_md5()
......@@ -331,6 +331,8 @@ def test_random_crop_and_resize_comp(plot=False):
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_c_cropped.append(c_image)
image_py_cropped.append(py_image)
mse = diff_mse(c_image, py_image)
assert mse < 0.02 # rounding error
if plot:
visualize_list(image_c_cropped, image_py_cropped, visualize_mode=2)
......
......@@ -15,16 +15,16 @@
"""
Testing RandomCropDecodeResize op in DE
"""
import cv2
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
from util import diff_mse, visualize_image
from util import diff_mse, visualize_image, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def test_random_crop_decode_resize_op(plot=False):
"""
......@@ -40,22 +40,46 @@ def test_random_crop_decode_resize_op(plot=False):
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
random_crop_resize_op = vision.RandomResizedCrop((256, 512), (1, 1), (0.5, 0.5))
data2 = data2.map(input_columns=["image"], operations=decode_op)
data2 = data2.map(input_columns=["image"], operations=random_crop_resize_op)
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
if num_iter > 0:
break
crop_and_resize_de = item1["image"]
original = item2["image"]
crop_and_resize_cv = cv2.resize(original, (512, 256))
mse = diff_mse(crop_and_resize_de, crop_and_resize_cv)
image1 = item1["image"]
image2 = item2["image"]
mse = diff_mse(image1, image2)
assert mse == 0
logger.info("random_crop_decode_resize_op_{}, mse: {}".format(num_iter + 1, mse))
if plot:
visualize_image(original, crop_and_resize_de, mse, crop_and_resize_cv)
visualize_image(image1, image2, mse)
num_iter += 1
def test_random_crop_decode_resize_md5():
"""
Test RandomCropDecodeResize with md5 check
"""
logger.info("Test RandomCropDecodeResize with md5 check")
original_seed = config_get_set_seed(10)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
random_crop_decode_resize_op = vision.RandomCropDecodeResize((256, 512), (1, 1), (0.5, 0.5))
data = data.map(input_columns=["image"], operations=random_crop_decode_resize_op)
# Compare with expected md5 from images
filename = "random_crop_decode_resize_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers((original_num_parallel_workers))
if __name__ == "__main__":
test_random_crop_decode_resize_op(plot=True)
test_random_crop_decode_resize_md5()
......@@ -20,11 +20,13 @@ import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.py_transforms as vision
from mindspore import log as logger
from util import diff_mse, visualize_image
from util import diff_mse, visualize_image, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def test_random_erasing_op(plot=False):
"""
......@@ -69,5 +71,32 @@ def test_random_erasing_op(plot=False):
visualize_image(image_1, image_2, mse)
def test_random_erasing_md5():
"""
Test RandomErasing with md5 check
"""
logger.info("Test RandomErasing with md5 check")
original_seed = config_get_set_seed(5)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transforms_1 = [
vision.Decode(),
vision.ToTensor(),
vision.RandomErasing(value='random')
]
transform_1 = vision.ComposeOp(transforms_1)
data = data.map(input_columns=["image"], operations=transform_1())
# Compare with expected md5 from images
filename = "random_erasing_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers((original_num_parallel_workers))
if __name__ == "__main__":
test_random_erasing_op(plot=True)
test_random_erasing_md5()
......@@ -49,7 +49,7 @@ def test_random_horizontal_op(plot=False):
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
random_horizontal_op = c_vision.RandomHorizontalFlip()
random_horizontal_op = c_vision.RandomHorizontalFlip(1.0)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_horizontal_op)
......@@ -69,6 +69,7 @@ def test_random_horizontal_op(plot=False):
image_h_flipped_2 = h_flip(image)
mse = diff_mse(image_h_flipped, image_h_flipped_2)
assert mse == 0
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
num_iter += 1
if plot:
......
......@@ -13,16 +13,18 @@
# limitations under the License.
# ==============================================================================
"""
Testing the resize op in DE
Testing RandomResize op in DE
"""
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def test_random_resize_op(plot=False):
"""
......@@ -52,5 +54,29 @@ def test_random_resize_op(plot=False):
visualize_list(image_original, image_resized)
def test_random_resize_md5():
"""
Test RandomResize with md5 check
"""
logger.info("Test RandomResize with md5 check")
original_seed = config_get_set_seed(5)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = vision.Decode()
resize_op = vision.RandomResize(10)
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=resize_op)
# Compare with expected md5 from images
filename = "random_resize_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
if __name__ == "__main__":
test_random_resize_op(plot=True)
test_random_resize_md5()
......@@ -21,18 +21,21 @@ import cv2
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision
import mindspore.dataset.transforms.vision.py_transforms as py_vision
from mindspore.dataset.transforms.vision.utils import Inter
from mindspore import log as logger
from util import visualize_image, diff_mse
from util import visualize_image, visualize_list, diff_mse, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def test_random_rotation_op(plot=False):
def test_random_rotation_op_c(plot=False):
"""
Test RandomRotation op
Test RandomRotation in c++ transformations op
"""
logger.info("test_random_rotation_op")
logger.info("test_random_rotation_op_c")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
......@@ -62,6 +65,42 @@ def test_random_rotation_op(plot=False):
visualize_image(original, rotation_de, mse, rotation_cv)
def test_random_rotation_op_py(plot=False):
"""
Test RandomRotation in python transformations op
"""
logger.info("test_random_rotation_op_py")
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
# use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
transform1 = py_vision.ComposeOp([py_vision.Decode(),
py_vision.RandomRotation((90, 90), expand=True),
py_vision.ToTensor()])
data1 = data1.map(input_columns=["image"], operations=transform1())
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
transform2 = py_vision.ComposeOp([py_vision.Decode(),
py_vision.ToTensor()])
data2 = data2.map(input_columns=["image"], operations=transform2())
num_iter = 0
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
if num_iter > 0:
break
rotation_de = (item1["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
original = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
logger.info("shape before rotate: {}".format(original.shape))
rotation_cv = cv2.rotate(original, cv2.ROTATE_90_COUNTERCLOCKWISE)
mse = diff_mse(rotation_de, rotation_cv)
logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse))
assert mse == 0
num_iter += 1
if plot:
visualize_image(original, rotation_de, mse, rotation_cv)
def test_random_rotation_expand():
"""
Test RandomRotation op
......@@ -71,7 +110,7 @@ def test_random_rotation_expand():
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
# use [90, 90] to force rotate 90 degrees, expand is set to be True to match output size
# expand is set to be True to match output size
random_rotation_op = c_vision.RandomRotation((0, 90), expand=True)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_rotation_op)
......@@ -83,9 +122,50 @@ def test_random_rotation_expand():
num_iter += 1
def test_rotation_diff():
def test_random_rotation_md5():
"""
Test Rotation op
Test RandomRotation with md5 check
"""
logger.info("Test RandomRotation with md5 check")
original_seed = config_get_set_seed(5)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# Fisrt dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
resize_op = c_vision.RandomRotation((0, 90),
expand=True,
resample=Inter.BILINEAR,
center=(50, 50),
fill_value=150)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=resize_op)
# Second dataset
data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
transform2 = py_vision.ComposeOp([py_vision.Decode(),
py_vision.RandomRotation((0, 90),
expand=True,
resample=Inter.BILINEAR,
center=(50, 50),
fill_value=150),
py_vision.ToTensor()])
data2 = data2.map(input_columns=["image"], operations=transform2())
# Compare with expected md5 from images
filename1 = "random_rotation_01_c_result.npz"
save_and_check_md5(data1, filename1, generate_golden=GENERATE_GOLDEN)
filename2 = "random_rotation_01_py_result.npz"
save_and_check_md5(data2, filename2, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
def test_rotation_diff(plot=False):
"""
Test RandomRotation op
"""
logger.info("test_random_rotation_op")
......@@ -93,7 +173,7 @@ def test_rotation_diff():
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
rotation_op = c_vision.RandomRotation((45, 45), expand=True)
rotation_op = c_vision.RandomRotation((45, 45))
ctrans = [decode_op,
rotation_op
]
......@@ -103,7 +183,7 @@ def test_rotation_diff():
# Second dataset
transforms = [
py_vision.Decode(),
py_vision.RandomRotation((45, 45), expand=True),
py_vision.RandomRotation((45, 45)),
py_vision.ToTensor(),
]
transform = py_vision.ComposeOp(transforms)
......@@ -111,10 +191,13 @@ def test_rotation_diff():
data2 = data2.map(input_columns=["image"], operations=transform())
num_iter = 0
image_list_c, image_list_py = [], []
for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()):
num_iter += 1
c_image = item1["image"]
py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8)
image_list_c.append(c_image)
image_list_py.append(py_image)
logger.info("shape of c_image: {}".format(c_image.shape))
logger.info("shape of py_image: {}".format(py_image.shape))
......@@ -122,8 +205,15 @@ def test_rotation_diff():
logger.info("dtype of c_image: {}".format(c_image.dtype))
logger.info("dtype of py_image: {}".format(py_image.dtype))
mse = diff_mse(c_image, py_image)
assert mse < 0.001 # Rounding error
if plot:
visualize_list(image_list_c, image_list_py, visualize_mode=2)
if __name__ == "__main__":
test_random_rotation_op(True)
test_random_rotation_op_c(plot=True)
test_random_rotation_op_py(plot=True)
test_random_rotation_expand()
test_rotation_diff()
test_random_rotation_md5()
test_rotation_diff(plot=True)
......@@ -16,14 +16,17 @@
Testing RandomSharpness op in DE
"""
import numpy as np
import mindspore.dataset as ds
import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, diff_mse, save_and_check_md5, \
config_get_set_seed, config_get_set_num_parallel_workers
DATA_DIR = "../data/dataset/testImageNetData/train/"
GENERATE_GOLDEN = False
def test_random_sharpness(degrees=(0.1, 1.9), plot=False):
"""
......@@ -32,13 +35,13 @@ def test_random_sharpness(degrees=(0.1, 1.9), plot=False):
logger.info("Test RandomSharpness")
# Original Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_original = F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.ToTensor()])
ds_original = ds.map(input_columns="image",
ds_original = data.map(input_columns="image",
operations=transforms_original())
ds_original = ds_original.batch(512)
......@@ -52,14 +55,14 @@ def test_random_sharpness(degrees=(0.1, 1.9), plot=False):
axis=0)
# Random Sharpness Adjusted Images
ds = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
transforms_random_sharpness = F.ComposeOp([F.Decode(),
F.Resize((224, 224)),
F.RandomSharpness(degrees=degrees),
F.ToTensor()])
ds_random_sharpness = ds.map(input_columns="image",
ds_random_sharpness = data.map(input_columns="image",
operations=transforms_random_sharpness())
ds_random_sharpness = ds_random_sharpness.batch(512)
......@@ -75,14 +78,45 @@ def test_random_sharpness(degrees=(0.1, 1.9), plot=False):
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = np.mean((images_random_sharpness[i] - images_original[i]) ** 2)
mse[i] = diff_mse(images_random_sharpness[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
visualize_list(images_original, images_random_sharpness)
def test_random_sharpness_md5():
"""
Test RandomSharpness with md5 comparison
"""
logger.info("Test RandomSharpness with md5 comparison")
original_seed = config_get_set_seed(5)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)
# define map operations
transforms = [
F.Decode(),
F.RandomSharpness((0.5, 1.5)),
F.ToTensor()
]
transform = F.ComposeOp(transforms)
# Generate dataset
data = de.ImageFolderDatasetV2(dataset_dir=DATA_DIR, shuffle=False)
data = data.map(input_columns=["image"], operations=transform())
# check results with md5 comparison
filename = "random_sharpness_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
# Restore configuration
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)
if __name__ == "__main__":
test_random_sharpness()
test_random_sharpness(plot=True)
test_random_sharpness(degrees=(0.5, 1.5), plot=True)
test_random_sharpness_md5()
......@@ -49,7 +49,7 @@ def test_random_vertical_op(plot=False):
# First dataset
data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = c_vision.Decode()
random_vertical_op = c_vision.RandomVerticalFlip()
random_vertical_op = c_vision.RandomVerticalFlip(1.0)
data1 = data1.map(input_columns=["image"], operations=decode_op)
data1 = data1.map(input_columns=["image"], operations=random_vertical_op)
......@@ -65,12 +65,11 @@ def test_random_vertical_op(plot=False):
break
image_v_flipped = item1["image"]
image = item2["image"]
image_v_flipped_2 = v_flip(image)
diff = image_v_flipped - image_v_flipped_2
mse = np.sum(np.power(diff, 2))
mse = diff_mse(image_v_flipped, image_v_flipped_2)
assert mse == 0
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
num_iter += 1
if plot:
......
......@@ -18,11 +18,12 @@ Testing the rescale op in DE
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as vision
from mindspore import log as logger
from util import visualize_image, diff_mse
from util import visualize_image, diff_mse, save_and_check_md5
DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
GENERATE_GOLDEN = False
def rescale_np(image):
"""
......@@ -72,11 +73,33 @@ def test_rescale_op(plot=False):
image_de_rescaled = item2["image"]
image_np_rescaled = get_rescaled(num_iter)
mse = diff_mse(image_de_rescaled, image_np_rescaled)
assert mse < 0.001 # rounding error
logger.info("image_{}, mse: {}".format(num_iter + 1, mse))
num_iter += 1
if plot:
visualize_image(image_original, image_de_rescaled, mse, image_np_rescaled)
def test_rescale_md5():
"""
Test Rescale with md5 comparison
"""
logger.info("Test Rescale with md5 comparison")
# generate dataset
data = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
decode_op = vision.Decode()
rescale_op = vision.Rescale(1.0 / 255.0, -1.0)
# apply map operations on images
data = data.map(input_columns=["image"], operations=decode_op)
data = data.map(input_columns=["image"], operations=rescale_op)
# check results with md5 comparison
filename = "rescale_01_result.npz"
save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
if __name__ == "__main__":
test_rescale_op(plot=True)
test_rescale_md5()
......@@ -21,7 +21,7 @@ import mindspore.dataset.engine as de
import mindspore.dataset.transforms.vision.c_transforms as C
import mindspore.dataset.transforms.vision.py_transforms as F
from mindspore import log as logger
from util import visualize_list
from util import visualize_list, diff_mse
DATA_DIR = "../data/dataset/testImageNetData/train/"
......@@ -83,7 +83,7 @@ def test_uniform_augment(plot=False, num_ops=2):
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = np.mean((images_ua[i] - images_original[i]) ** 2)
mse[i] = diff_mse(images_ua[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
if plot:
......@@ -147,7 +147,7 @@ def test_cpp_uniform_augment(plot=False, num_ops=2):
num_samples = images_original.shape[0]
mse = np.zeros(num_samples)
for i in range(num_samples):
mse[i] = np.mean((images_ua[i] - images_original[i]) ** 2)
mse[i] = diff_mse(images_ua[i], images_original[i])
logger.info("MSE= {}".format(str(np.mean(mse))))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册