提交 10f381d6 编写于 作者: P peixu_ren

Modify the name of parameters in uniform

上级 f3fd7a55
......@@ -92,55 +92,55 @@ def normal(shape, mean, stddev, seed=0):
value = random_normal * stddev + mean
return value
def uniform(shape, a, b, seed=0, dtype=mstype.float32):
def uniform(shape, minval, maxval, seed=0, dtype=mstype.float32):
"""
Generates random numbers according to the Uniform random number distribution.
Note:
The number in tensor a should be strictly less than b at any position after broadcasting.
The number in tensor minval should be strictly less than maxval at any position after broadcasting.
Args:
shape (tuple): The shape of random tensor to be generated.
a (Tensor): The a distribution parameter.
minval (Tensor): The a distribution parameter.
It defines the minimum possibly generated value. With int32 or float32 data type.
If dtype is int32, only one number is allowed.
b (Tensor): The b distribution parameter.
maxval (Tensor): The b distribution parameter.
It defines the maximum possibly generated value. With int32 or float32 data type.
If dtype is int32, only one number is allowed.
seed (int): Seed is used as entropy source for Random number engines generating pseudo-random numbers.
Must be non-negative. Default: 0.
Returns:
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of a and b.
Tensor. The shape should be the broadcasted shape of Input "shape" and shapes of minval and maxval.
The dtype is designated as the input `dtype`.
Examples:
>>> For discrete uniform distribution, only one number is allowed for both a and b:
>>> For discrete uniform distribution, only one number is allowed for both minval and maxval:
>>> shape = (4, 2)
>>> a = Tensor(1, mstype.int32)
>>> b = Tensor(2, mstype.int32)
>>> output = C.uniform(shape, a, b, seed=5)
>>> minval = Tensor(1, mstype.int32)
>>> maxval = Tensor(2, mstype.int32)
>>> output = C.uniform(shape, minval, maxval, seed=5)
>>>
>>> For continuous uniform distribution, a and b can be multi-dimentional:
>>> For continuous uniform distribution, minval and maxval can be multi-dimentional:
>>> shape = (4, 2)
>>> a = Tensor([1.0, 2.0], mstype.float32)
>>> b = Tensor([4.0, 5.0], mstype.float32)
>>> output = C.uniform(shape, a, b, seed=5)
>>> minval = Tensor([1.0, 2.0], mstype.float32)
>>> maxval = Tensor([4.0, 5.0], mstype.float32)
>>> output = C.uniform(shape, minval, maxval, seed=5)
"""
a_dtype = F.dtype(a)
b_dtype = F.dtype(b)
const_utils.check_tensors_dtype_same(a_dtype, dtype, "uniform")
const_utils.check_tensors_dtype_same(b_dtype, dtype, "uniform")
minval_dtype = F.dtype(minval)
maxval_dtype = F.dtype(maxval)
const_utils.check_tensors_dtype_same(minval_dtype, dtype, "uniform")
const_utils.check_tensors_dtype_same(maxval_dtype, dtype, "uniform")
const_utils.check_non_negative("seed", seed, "uniform")
seed1 = get_seed()
seed2 = seed
if const_utils.is_same_type(dtype, mstype.int32):
random_uniform = P.UniformInt(seed1, seed2)
value = random_uniform(shape, a, b)
value = random_uniform(shape, minval, maxval)
else:
uniform_real = P.UniformReal(seed1, seed2)
random_uniform = uniform_real(shape)
value = random_uniform * (b - a) + a
value = random_uniform * (maxval - minval) + minval
return value
def gamma(shape, alpha, beta, seed=0):
......
......@@ -224,14 +224,14 @@ class Poisson(PrimitiveWithInfer):
class UniformInt(PrimitiveWithInfer):
r"""
Produces random integer values i, uniformly distributed on the closed interval [a, b), that is,
Produces random integer values i, uniformly distributed on the closed interval [minval, maxval), that is,
distributed according to the discrete probability function:
.. math::
\text{P}(i|a,b) = \frac{1}{b-a+1},
Note:
The number in tensor a should be strictly less than b at any position after broadcasting.
The number in tensor minval should be strictly less than maxval at any position after broadcasting.
Args:
seed (int): Random seed. Must be non-negative. Default: 0.
......@@ -239,9 +239,9 @@ class UniformInt(PrimitiveWithInfer):
Inputs:
- **shape** (tuple) - The shape of random tensor to be generated. Only constant value is allowed.
- **a** (Tensor) - The a distribution parameter.
- **minval** (Tensor) - The a distribution parameter.
It defines the minimum possibly generated value. With int32 data type. Only one number is supported.
- **b** (Tensor) - The b distribution parameter.
- **maxval** (Tensor) - The b distribution parameter.
It defines the maximum possibly generated value. With int32 data type. Only one number is supported.
Outputs:
......@@ -249,32 +249,32 @@ class UniformInt(PrimitiveWithInfer):
Examples:
>>> shape = (4, 16)
>>> a = Tensor(1, mstype.int32)
>>> b = Tensor(5, mstype.int32)
>>> minval = Tensor(1, mstype.int32)
>>> maxval = Tensor(5, mstype.int32)
>>> uniform_int = P.UniformInt(seed=10)
>>> output = uniform_int(shape, a, b)
>>> output = uniform_int(shape, minval, maxval)
"""
@prim_attr_register
def __init__(self, seed=0, seed2=0):
"""Init UniformInt"""
self.init_prim_io_names(inputs=['shape', 'a', 'b'], outputs=['output'])
self.init_prim_io_names(inputs=['shape', 'minval', 'maxval'], outputs=['output'])
validator.check_integer("seed", seed, 0, Rel.GE, self.name)
validator.check_integer("seed2", seed2, 0, Rel.GE, self.name)
def __infer__(self, shape, a, b):
def __infer__(self, shape, minval, maxval):
shape_v = shape["value"]
if shape_v is None:
raise ValueError(f"For {self.name}, shape must be const.")
validator.check_value_type("shape", shape_v, [tuple], self.name)
for i, shape_i in enumerate(shape_v):
validator.check_integer("shape[%d]" % i, shape_i, 0, Rel.GT, self.name)
validator.check_tensor_type_same({"a": a["dtype"]}, [mstype.int32], self.name)
validator.check_tensor_type_same({"b": b["dtype"]}, [mstype.int32], self.name)
a_shape = a['shape']
b_shape = b['shape']
validator.check("dim of a", len(a_shape), '0(scalar)', 0, Rel.EQ, self.name)
validator.check("dim of b", len(b_shape), '0(scalar)', 0, Rel.EQ, self.name)
validator.check_tensor_type_same({"minval": minval["dtype"]}, [mstype.int32], self.name)
validator.check_tensor_type_same({"maxval": maxval["dtype"]}, [mstype.int32], self.name)
minval_shape = minval['shape']
maxval_shape = maxval['shape']
validator.check("dim of minval", len(minval_shape), '0(scalar)', 0, Rel.EQ, self.name)
validator.check("dim of maxval", len(maxval_shape), '0(scalar)', 0, Rel.EQ, self.name)
out = {
'shape': shape_v,
'dtype': mstype.int32,
......
......@@ -28,28 +28,28 @@ class Net(nn.Cell):
self.uniformint = P.UniformInt(seed=seed)
self.shape = shape
def construct(self, a, b):
return self.uniformint(self.shape, a, b)
def construct(self, minval, maxval):
return self.uniformint(self.shape, minval, maxval)
def test_net_1D():
seed = 10
shape = (3, 2, 4)
a = 1
b = 5
minval = 1
maxval = 5
net = Net(shape, seed=seed)
ta, tb = Tensor(a, mstype.int32), Tensor(b, mstype.int32)
output = net(ta, tb)
tminval, tmaxval = Tensor(minval, mstype.int32), Tensor(maxval, mstype.int32)
output = net(tminval, tmaxval)
assert output.shape == (3, 2, 4)
def test_net_ND():
seed = 10
shape = (3, 2, 1)
a = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.int32)
b = np.array([10]).astype(np.int32)
minval = np.array([[[1, 2]], [[3, 4]], [[5, 6]]]).astype(np.int32)
maxval = np.array([10]).astype(np.int32)
net = Net(shape, seed)
ta, tb = Tensor(a), Tensor(b)
output = net(ta, tb)
tminval, tmaxval = Tensor(minval), Tensor(maxval)
output = net(tminval, tmaxval)
print(output.asnumpy())
assert output.shape == (3, 2, 2)
......@@ -29,28 +29,28 @@ class Net(nn.Cell):
self.shape = shape
self.seed = seed
def construct(self, a, b):
def construct(self, minval, maxval):
C.set_seed(20)
return C.uniform(self.shape, a, b, self.seed)
return C.uniform(self.shape, minval, maxval, self.seed)
def test_net_1D():
seed = 10
shape = (3, 2, 4)
a = 1.0
b = 6.0
minval = 1.0
maxval = 6.0
net = Net(shape, seed)
ta, tb = Tensor(a, mstype.float32), Tensor(b, mstype.float32)
output = net(ta, tb)
tminval, tmaxval = Tensor(minval, mstype.float32), Tensor(maxval, mstype.float32)
output = net(tminval, tmaxval)
assert output.shape == (3, 2, 4)
def test_net_ND():
seed = 10
shape = (3, 1, 2)
a = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
b = np.array([1.0]).astype(np.float32)
minval = np.array([[[1], [2]], [[3], [4]], [[5], [6]]]).astype(np.float32)
maxval = np.array([1.0]).astype(np.float32)
net = Net(shape, seed)
ta, tb = Tensor(a, mstype.float32), Tensor(b, mstype.float32)
output = net(ta, tb)
tminval, tmaxval = Tensor(minval, mstype.float32), Tensor(maxval, mstype.float32)
output = net(tminval, tmaxval)
assert output.shape == (3, 2, 2)
......@@ -27,17 +27,17 @@ class Net(nn.Cell):
self.uniformreal = P.UniformReal(seed=seed)
self.shape = shape
def construct(self, a, b):
return self.uniformreal(self.shape, a, b)
def construct(self, minval, maxval):
return self.uniformreal(self.shape, minval, maxval)
def test_net_1D():
seed = 10
shape = (3, 2, 4)
a = 0.0
b = 1.0
minval = 0.0
maxval = 1.0
net = Net(shape, seed)
ta, tb = Tensor(a, mstype.float32), Tensor(b, mstype.float32)
output = net(ta, tb)
tminval, tmaxval = Tensor(minval, mstype.float32), Tensor(maxval, mstype.float32)
output = net(tminval, tmaxval)
print(output.asnumpy())
assert output.shape == (3, 2, 4)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册