Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
10abb684
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
10abb684
编写于
5月 08, 2020
作者:
L
liuxiao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ops CTCLoss
上级
fdad9135
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
123 addition
and
3 deletion
+123
-3
mindspore/ccsrc/transform/convert.cc
mindspore/ccsrc/transform/convert.cc
+5
-1
mindspore/ccsrc/transform/op_declare.cc
mindspore/ccsrc/transform/op_declare.cc
+16
-0
mindspore/ccsrc/transform/op_declare.h
mindspore/ccsrc/transform/op_declare.h
+4
-0
mindspore/ops/_grad/grad_nn_ops.py
mindspore/ops/_grad/grad_nn_ops.py
+13
-0
mindspore/ops/operations/__init__.py
mindspore/ops/operations/__init__.py
+2
-1
mindspore/ops/operations/nn_ops.py
mindspore/ops/operations/nn_ops.py
+76
-1
tests/ut/python/ops/test_ops.py
tests/ut/python/ops/test_ops.py
+7
-0
未找到文件。
mindspore/ccsrc/transform/convert.cc
浏览文件 @
10abb684
...
...
@@ -196,6 +196,8 @@ const char kNameBatchToSpace[] = "BatchToSpace";
const
char
kNameAtan2
[]
=
"Atan2"
;
const
char
kNameApplyRMSProp
[]
=
"ApplyRMSProp"
;
const
char
kNameApplyCenteredRMSProp
[]
=
"ApplyCenteredRMSProp"
;
const
char
kNameL2Loss
[]
=
"L2Loss"
;
const
char
kNameCTCLoss
[]
=
"CTCLoss"
;
// -----------------OpAdapter initialization--------------
std
::
unordered_map
<
std
::
string
,
OpAdapterDescPtr
>
&
DfGraphConvertor
::
get_adpt_map
()
{
...
...
@@ -391,7 +393,9 @@ std::unordered_map<std::string, OpAdapterDescPtr> &DfGraphConvertor::get_adpt_ma
{
string
(
kNameBatchToSpace
),
ADPT_DESC
(
BatchToSpaceD
)},
{
string
(
kNameAtan2
),
ADPT_DESC
(
Atan2
)},
{
string
(
kNameApplyRMSProp
),
ADPT_DESC
(
ApplyRMSPropD
)},
{
string
(
kNameApplyCenteredRMSProp
),
ADPT_DESC
(
ApplyCenteredRMSProp
)}};
{
string
(
kNameApplyCenteredRMSProp
),
ADPT_DESC
(
ApplyCenteredRMSProp
)},
{
string
(
kNameL2Loss
),
ADPT_DESC
(
L2Loss
)},
{
string
(
kNameCTCLoss
),
ADPT_DESC
(
CTCLoss
)}};
#ifdef ENABLE_GE
adpt_map
[
string
(
kNamePrint
)]
=
ADPT_DESC
(
Print
);
adpt_map
[
string
(
kNameApplyAdam
)]
=
ADPT_DESC
(
ApplyAdamD
);
...
...
mindspore/ccsrc/transform/op_declare.cc
浏览文件 @
10abb684
...
...
@@ -1227,6 +1227,22 @@ INPUT_MAP(ApplyCenteredRMSProp) = {{1, INPUT_DESC(var)}, {2, INPUT_DESC(mg)},
ATTR_MAP
(
ApplyCenteredRMSProp
)
=
{{
"use_locking"
,
ATTR_DESC
(
use_locking
,
AnyTraits
<
bool
>
())}};
OUTPUT_MAP
(
ApplyCenteredRMSProp
)
=
{{
0
,
OUTPUT_DESC
(
var
)}};
// L2Loss
INPUT_MAP
(
L2Loss
)
=
{{
1
,
INPUT_DESC
(
x
)}};
ATTR_MAP
(
L2Loss
)
=
EMPTY_ATTR_MAP
;
OUTPUT_MAP
(
L2Loss
)
=
{{
0
,
OUTPUT_DESC
(
y
)}};
// CTCLoss
INPUT_MAP
(
CTCLoss
)
=
{{
1
,
INPUT_DESC
(
inputs
)},
{
2
,
INPUT_DESC
(
labels_indices
)},
{
3
,
INPUT_DESC
(
labels_values
)},
{
4
,
INPUT_DESC
(
sequence_length
)}};
ATTR_MAP
(
CTCLoss
)
=
{
{
"preprocess_collapse_repeated"
,
ATTR_DESC
(
preprocess_collapse_repeated
,
AnyTraits
<
bool
>
())},
{
"ctc_merge_repeated"
,
ATTR_DESC
(
ctc_merge_repeated
,
AnyTraits
<
bool
>
())},
{
"ignore_longer_outputs_than_inputs"
,
ATTR_DESC
(
ignore_longer_outputs_than_inputs
,
AnyTraits
<
bool
>
())}};
OUTPUT_MAP
(
CTCLoss
)
=
{{
0
,
OUTPUT_DESC
(
loss
)},
{
1
,
OUTPUT_DESC
(
gradient
)}};
#ifdef ENABLE_GE
// Print
INPUT_MAP
(
Print
)
=
EMPTY_INPUT_MAP
;
...
...
mindspore/ccsrc/transform/op_declare.h
浏览文件 @
10abb684
...
...
@@ -465,6 +465,10 @@ DECLARE_OP_USE_INPUT_ATTR(ApplyRMSPropD)
DECLARE_OP_USE_OUTPUT
(
ApplyRMSPropD
)
DECLARE_OP_ADAPTER
(
ApplyCenteredRMSProp
)
DECLARE_OP_USE_OUTPUT
(
ApplyCenteredRMSProp
)
DECLARE_OP_ADAPTER
(
L2Loss
)
DECLARE_OP_USE_OUTPUT
(
L2Loss
)
DECLARE_OP_ADAPTER
(
CTCLoss
)
DECLARE_OP_USE_OUTPUT
(
CTCLoss
)
#ifdef ENABLE_GE
DECLARE_OP_ADAPTER
(
Print
)
DECLARE_OP_USE_DYN_INPUT
(
Print
)
...
...
mindspore/ops/_grad/grad_nn_ops.py
浏览文件 @
10abb684
...
...
@@ -668,3 +668,16 @@ def get_bprop_dropout(self):
return
(
dx
,)
return
bprop
@
bprop_getters
.
register
(
P
.
CTCLoss
)
def
get_bprop_ctc_loss
(
self
):
"""Grad definition for `CTCLoss` operation"""
expand
=
P
.
ExpandDims
()
def
bprop
(
inputs
,
labels_indices
,
labels_values
,
sequence_length
,
out
,
dout
):
grad_loss
=
out
[
1
]
grad
=
grad_loss
*
expand
(
dout
[
0
],
-
1
)
return
grad
,
zeros_like
(
labels_indices
),
zeros_like
(
labels_values
),
zeros_like
(
sequence_length
)
return
bprop
mindspore/ops/operations/__init__.py
浏览文件 @
10abb684
...
...
@@ -55,7 +55,7 @@ from .nn_ops import (LSTM, SGD, Adam, ApplyMomentum, BatchNorm,
DropoutDoMask
,
DropoutGrad
,
Dropout
,
DropoutGenMask
,
Flatten
,
FusedBatchNorm
,
Gelu
,
Elu
,
GetNext
,
L2Normalize
,
LayerNorm
,
L2Loss
,
GetNext
,
L2Normalize
,
LayerNorm
,
L2Loss
,
CTCLoss
,
LogSoftmax
,
MaxPool
,
AvgPool
,
Conv2DBackpropInput
,
ConfusionMulGrad
,
...
...
@@ -172,6 +172,7 @@ __all__ = [
'Reciprocal'
,
'SmoothL1Loss'
,
'L2Loss'
,
'CTCLoss'
,
'ReduceAll'
,
'ScalarToArray'
,
'ScalarToTensor'
,
...
...
mindspore/ops/operations/nn_ops.py
浏览文件 @
10abb684
...
...
@@ -1564,7 +1564,7 @@ class L2Loss(PrimitiveWithInfer):
def
infer_dtype
(
self
,
x_type
):
validator
.
check_subclass
(
"x_type"
,
x_type
,
mstype
.
tensor
,
self
.
name
)
valid_types
=
[
mstype
.
float16
,
mstype
.
float32
,
mstype
.
double
]
valid_types
=
[
mstype
.
float16
,
mstype
.
float32
]
validator
.
check_tensor_type_same
({
'x_type'
:
x_type
},
valid_types
,
self
.
name
)
return
x_type
...
...
@@ -2871,3 +2871,78 @@ class DropoutGrad(PrimitiveWithInfer):
valid_types
=
(
mstype
.
float16
,
mstype
.
float32
)
validator
.
check_tensor_type_same
({
"dy_dtype"
:
dy_dtype
},
valid_types
,
self
.
name
)
return
dy_dtype
class
CTCLoss
(
PrimitiveWithInfer
):
"""
Calculates the CTC(Connectionist Temporal Classification) loss. Also calculates the gradient.
Args:
preprocess_collapse_repeated (bool): If True, repeated labels are collapsed prior to the CTC calculation.
Default: False.
ctc_merge_repeated (bool): If False, during CTC calculation, repeated non-blank labels will not be merged
and are interpreted as individual labels. This is a simplfied version if CTC.
Default: True.
ignore_longer_outputs_than_inputs (bool): If True, sequences with longer outputs than inputs will be ignored.
Default: False.
Inputs:
- **inputs** (Tensor) - The input Tensor should be a `3-D` tensor whose shape is
:math:`(max_time, batch_size, num_class)`. `num_class` should be `num_labels + 1` classes, `num_labels`
indicates the number of actual labels. Blank labels are reserved.
- **labels_indices** (Tensor) - The indices of labels. `labels_indices[i, :] == [b, t]` means `labels_values[i]`
stores the id for `(batch b, time t)`. The type must be int64 and rank must be 2.
- **labels_values** (Tensor) - A `1-D` input tensor. The values associated with the given batch and time. The
type must be int32. `labels_values[i]` must in the range of `[0, num_class)`.
- **sequence_length** (Tensor) - A tensor containing sequence lengths with the shape of :math:`(batch_size)`.
The type must be int32. Each value in the tensor should not greater than `max_time`.
Outputs:
- **loss** (Tensor) - A tensor containing log-probabilities, the shape is :math:`(batch_size)`. Has the same
type with `inputs`.
- **gradient** (Tensor) - The gradient of `loss`. Has the same type and shape with `inputs`.
Examples:
>>> inputs = Tensor(np.random.random((2, 2, 3)), mindspore.float32)
>>> labels_indices = Tensor(np.array([[0, 0], [1, 0]]), mindspore.int64)
>>> labels_values = Tensor(np.array([2, 2]), mindspore.int32)
>>> sequence_length = Tensor(np.array([2, 2]), mindspore.int32)
>>> ctc_loss = P.CTCloss()
>>> output = ctc_loss(inputs, labels_indices, labels_values, sequence_length)
"""
@
prim_attr_register
def
__init__
(
self
,
preprocess_collapse_repeated
=
False
,
ctc_merge_repeated
=
False
,
ignore_longer_outputs_than_inputs
=
False
):
self
.
init_prim_io_names
(
inputs
=
[
"inputs"
,
"labels_indices"
,
"labels_values"
,
"sequence_length"
],
outputs
=
[
"loss"
,
"gradient"
])
validator
.
check_value_type
(
"preprocess_collapse_repeated"
,
preprocess_collapse_repeated
,
[
bool
],
self
.
name
)
self
.
preprocess_collapse_repeated_
=
preprocess_collapse_repeated
self
.
ctc_merge_repeated_
=
validator
.
check_value_type
(
"ctc_merge_repeated"
,
ctc_merge_repeated
,
[
bool
],
self
.
name
)
validator
.
check_value_type
(
"ignore_longer_outputs_than_inputs"
,
ignore_longer_outputs_than_inputs
,
[
bool
],
self
.
name
)
self
.
ignore_longer_outputs_than_inputs_
=
ignore_longer_outputs_than_inputs
def
infer_shape
(
self
,
inputs
,
labels_indices
,
labels_values
,
sequence_length
):
validator
.
check_integer
(
"inputs rank"
,
len
(
inputs
),
3
,
Rel
.
EQ
,
self
.
name
)
validator
.
check_integer
(
"labels_indices rank"
,
len
(
labels_indices
),
2
,
Rel
.
EQ
,
self
.
name
)
validator
.
check_integer
(
"labels_values rank"
,
len
(
labels_values
),
1
,
Rel
.
EQ
,
self
.
name
)
validator
.
check_integer
(
"sequence_length rank"
,
len
(
sequence_length
),
1
,
Rel
.
EQ
,
self
.
name
)
validator
.
check
(
'labels_indices size'
,
labels_indices
[
0
],
'labels_values size'
,
labels_values
[
0
],
Rel
.
EQ
,
self
.
name
)
validator
.
check
(
'inputs batch_size'
,
inputs
[
1
],
'sequence_length batch_size'
,
sequence_length
[
0
],
Rel
.
EQ
,
self
.
name
)
batch_size
=
[]
batch_size
.
append
(
inputs
[
1
])
return
batch_size
,
inputs
def
infer_dtype
(
self
,
inputs
,
labels_indices
,
labels_values
,
sequence_length
):
validator
.
check_subclass
(
"inputs_dtype"
,
inputs
,
mstype
.
tensor
,
self
.
name
)
validator
.
check_subclass
(
"labels_indices_dtype"
,
labels_indices
,
mstype
.
tensor
,
self
.
name
)
validator
.
check_subclass
(
"labels_values_dtype"
,
labels_values
,
mstype
.
tensor
,
self
.
name
)
validator
.
check_subclass
(
"sequence_length_dtype"
,
sequence_length
,
mstype
.
tensor
,
self
.
name
)
validator
.
check_tensor_type_same
({
"inputs_dtype"
:
inputs
},
[
mstype
.
float32
,
mstype
.
double
],
self
.
name
)
validator
.
check_tensor_type_same
({
"labels_indices_dtype"
:
labels_indices
},
[
mstype
.
int64
],
self
.
name
)
validator
.
check_tensor_type_same
({
"labels_values_dtype"
:
labels_values
},
[
mstype
.
int32
],
self
.
name
)
validator
.
check_tensor_type_same
({
"sequence_length_dtype"
:
sequence_length
},
[
mstype
.
int32
],
self
.
name
)
return
inputs
,
inputs
tests/ut/python/ops/test_ops.py
浏览文件 @
10abb684
...
...
@@ -909,6 +909,13 @@ test_case_nn_ops = [
'desc_inputs'
:
[[
3
,
3
],
[
3
,
3
],
[
3
,
3
],
[
3
,
3
],
[
3
,
3
]],
'desc_bprop'
:
[
3
,
3
],
'skip'
:
[
'backward'
]}),
(
'CTCLoss'
,
{
'block'
:
P
.
CTCLoss
(),
'desc_inputs'
:
[
Tensor
(
np
.
ones
([
6
,
4
,
6
]).
astype
(
np
.
float32
)),
Tensor
(
np
.
array
([[
0
,
1
],
[
1
,
0
],
[
2
,
3
],
[
3
,
2
]]).
astype
(
np
.
int64
)),
Tensor
(
np
.
array
([
1
,
2
,
3
,
4
]).
astype
(
np
.
int32
)),
Tensor
(
np
.
array
([
6
,
6
,
6
,
6
]).
astype
(
np
.
int32
))],
'desc_bprop'
:
[[
4
],
[
6
,
4
,
6
]]}),
(
'L2Loss_1'
,
{
'block'
:
P
.
L2Loss
(),
'desc_inputs'
:
[
Tensor
(
np
.
array
([
1
,
2
,
3
,
4
]),
mstype
.
float32
)],
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录