提交 050d713d 编写于 作者: Y yankai

remove maketuple and getitem

上级 72d2fc74
/**
* This is the C++ adaptation and derivative work of Myia (https://github.com/mila-iqia/myia/).
*
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
......@@ -17,52 +15,114 @@
*/
#include "src/common/anf_exporter/anf_exporter.h"
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
#include <string>
#include "abstract/abstract_value.h"
#include "src/common/anf_exporter/anf_populater/anf_node_populater_registry.h"
#include "src/param_value_lite.h"
#include "base/core_ops.h"
#include "mindspore/core/ir/primitive.h"
#include "src/common/anf_exporter/anf_populater/anf_node_populater_registry.h"
#include "src/ir/primitive_t_value.h"
#include "base/core_ops.h"
#include "src/ir/tensor.h"
#include "src/param_value_lite.h"
namespace mindspore::lite {
schema::MetaGraphT *AnfExporter::Export(const FuncGraphPtr &funcGraph) {
auto cnodes = funcGraph->GetOrderedCnodes();
auto metaGraphT = std::make_unique<schema::MetaGraphT>();
for (const auto &cnode : cnodes) {
auto primitive = GetValueNode<PrimitivePtr>(cnode->input(0));
if (primitive != nullptr && primitive == prim::kPrimReturn) {
// set graph outputs tensors
auto inputNode = cnode->input(1);
std::set<std::string> RemoveNodeInAnfExporter{"tuple_getitem", "make_tuple"};
void AnfExporter::RemoveIfMakeTuple(const CNodePtr &cnode) {
bool hasMakeTuple = false;
std::vector<AnfNodePtr> inputs;
inputs.clear();
inputs.emplace_back(cnode->input(0));
for (size_t i = 1; i < cnode->inputs().size(); ++i) {
AnfNodePtr inputNode = cnode->input(i);
if (!inputNode->isa<CNode>()) {
inputs.emplace_back(cnode->input(i));
continue;
}
auto inputCNode = utils::cast<CNodePtr>(inputNode);
auto inputPrimitive = GetValueNode<PrimitivePtr>(inputCNode->input(0));
if (inputPrimitive == prim::kPrimMakeTuple) {
auto makeTupleNode = utils::cast<CNodePtr>(inputNode);
if (IsPrimitiveCNode(makeTupleNode, prim::kPrimMakeTuple)) {
hasMakeTuple = true;
for (size_t j = 1; j < makeTupleNode->inputs().size(); ++j) {
inputs.emplace_back(makeTupleNode->input(j));
}
} else {
inputs.emplace_back(cnode->input(i));
}
}
if (hasMakeTuple) {
cnode->set_inputs(inputs);
}
}
bool AnfExporter::RemoveIfTupleGetItem(const CNodePtr &cnode) {
bool hasTupleGetItem = false;
std::vector<AnfNodePtr> inputs;
inputs.clear();
inputs.emplace_back(cnode->input(0));
for (size_t i = 1; i < cnode->inputs().size(); ++i) {
AnfNodePtr inputNode = cnode->input(i);
if (!inputNode->isa<CNode>()) {
inputs.emplace_back(cnode->input(i));
continue;
}
auto tupleGetItemNode = utils::cast<CNodePtr>(inputNode);
if (IsPrimitiveCNode(tupleGetItemNode, prim::kPrimTupleGetItem)) {
hasTupleGetItem = true;
inputs.emplace_back(tupleGetItemNode->input(1));
AnfNodePtr indexNode = tupleGetItemNode->input(2);
if (utils::isa<ValueNodePtr>(indexNode)) {
MS_LOG(ERROR) << "TupleGetItem's input 2 is not valuenode";
return false;
}
ValueNodePtr valueNode = utils::cast<ValueNodePtr>(indexNode);
mapRemoveGetItem_[tupleGetItemNode->input(1)->fullname_with_scope()] =
GetValue<int>(valueNode->value());
} else {
inputs.emplace_back(cnode->input(i));
}
}
if (hasTupleGetItem) {
cnode->set_inputs(inputs);
}
return true;
}
bool AnfExporter::AddOutPutIfReturn(const std::unique_ptr<schema::MetaGraphT> &metaGraphT, const CNodePtr &cnode) {
for (size_t i = 1; i < cnode->inputs().size(); ++i) {
auto inputNode = cnode->input(i);
if (!inputNode->isa<CNode>()) {
MS_LOG(ERROR) << "Node of Return's input is not CNode";
return false;
}
auto inputCNode = utils::cast<CNodePtr>(inputNode);
auto inputPrimitive = GetValueNode<PrimitivePtr>(inputCNode->input(0));
std::string inputName = inputNode->fullname_with_scope();
auto graphOutput = nodeIdMap[inputName];
metaGraphT->outputIndex.emplace_back(graphOutput);
}
return true;
}
schema::MetaGraphT *AnfExporter::Export(const FuncGraphPtr &funcGraph) {
auto cnodes = funcGraph->GetOrderedCnodes();
auto metaGraphT = std::make_unique<schema::MetaGraphT>();
for (const auto &cnode : cnodes) {
auto primitive = GetValueNode<PrimitivePtr>(cnode->input(0));
if (primitive != nullptr &&
RemoveNodeInAnfExporter.count(primitive->name()) != 0) {
continue;
}
if (primitive != nullptr && primitive == prim::kPrimMakeTuple) {
for (size_t i = 1; i < cnode->inputs().size(); i++) {
auto graphOutNode = cnode->input(i);
if (!graphOutNode->isa<CNode>()) {
MS_LOG(ERROR) << "Inputs of MakeTuple should be cNode";
return nullptr;
}
std::string graphOutNodeName = graphOutNode->fullname_with_scope();
auto graphOutIndex = nodeIdMap[graphOutNodeName];
metaGraphT->outputIndex.emplace_back(graphOutIndex);
}
mapRemoveGetItem_.clear();
RemoveIfMakeTuple(cnode);
RemoveIfTupleGetItem(cnode);
if (primitive != nullptr && primitive->name() == prim::kPrimReturn->name()) {
AddOutPutIfReturn(metaGraphT, cnode);
continue;
}
......@@ -74,19 +134,27 @@ schema::MetaGraphT *AnfExporter::Export(const FuncGraphPtr &funcGraph) {
primitive = GetValueNode<PrimitivePtr>(cnode->input(0));
MS_ASSERT(primitive != nullptr);
std::string opType = primitive->name();
auto nodeParser = AnfNodePopulaterRegistry::GetInstance()->GetNodePopulater(opType);
auto nodeParser =
AnfNodePopulaterRegistry::GetInstance()->GetNodePopulater(opType);
if (nodeParser == nullptr) {
MS_LOG(ERROR) << "Find op parser failed, opType: " << opType;
return nullptr;
}
std::vector<schema::TensorT *> outputs;
if (utils::isa<abstract::AbstractSequeue>(cnode->abstract())) {
auto abstract_cnode =
utils::cast<abstract::AbstractSequeuePtr>(cnode->abstract());
outputs.resize(abstract_cnode->size());
}
nodeParser->Parse(cnode, node.get(), &outputs);
SetOpInputNode(cnode, metaGraphT.get(), node.get());
SetOpOutputNode(outputs, metaGraphT.get(), node.get());
metaGraphT->nodes.emplace_back(std::move(node));
continue;
}
auto primitiveT_value = GetValueNode<std::shared_ptr<PrimitiveTValue>>(cnode->input(0));
auto primitiveT_value =
GetValueNode<std::shared_ptr<PrimitiveTValue>>(cnode->input(0));
if (primitiveT_value == nullptr) {
MS_LOG(ERROR) << "PrimitiveT_value is nullptr";
return nullptr;
......@@ -98,7 +166,8 @@ schema::MetaGraphT *AnfExporter::Export(const FuncGraphPtr &funcGraph) {
return nullptr;
}
node->primitive = std::unique_ptr<schema::PrimitiveT>(primitiveT_value->GetPrimitiveT());
node->primitive =
std::unique_ptr<schema::PrimitiveT>(primitiveT_value->GetPrimitiveT());
std::vector<schema::TensorT *> outputs;
SetOpInputNode(cnode, metaGraphT.get(), node.get());
SetOpOutputNode(outputs, metaGraphT.get(), node.get());
......@@ -112,7 +181,8 @@ schema::MetaGraphT *AnfExporter::Export(const FuncGraphPtr &funcGraph) {
auto tensor_input = metaGraphT->allTensors[activate_index].get();
auto input_quant_params = primitiveT_value->GetInputQuantParams();
if (input_quant_params.empty()) {
MS_LOG(WARNING) << "node: " << node->name << " input quant params is empty";
MS_LOG(WARNING) << "node: " << node->name
<< " input quant params is empty";
} else {
std::unique_ptr<schema::QuantParamT> input_quant_param =
std::make_unique<schema::QuantParamT>(input_quant_params[0]);
......@@ -124,7 +194,8 @@ schema::MetaGraphT *AnfExporter::Export(const FuncGraphPtr &funcGraph) {
auto tensor_output = metaGraphT->allTensors[output_index].get();
auto output_quant_params = primitiveT_value->GetOutputQuantParams();
if (output_quant_params.empty()) {
MS_LOG(WARNING) << "node: " << node->name << " output quant params is empty";
MS_LOG(WARNING) << "node: " << node->name
<< " output quant params is empty";
} else {
std::unique_ptr<schema::QuantParamT> output_quant_param =
std::make_unique<schema::QuantParamT>(output_quant_params[0]);
......@@ -134,8 +205,9 @@ schema::MetaGraphT *AnfExporter::Export(const FuncGraphPtr &funcGraph) {
// // TensorType
// valuePtr = primitive->GetAttr(kInputTensorDataType);
// if (valuePtr != nullptr) {
// MS_LOG(INFO) << "node: " << node->name << " input tensor data type: " << GetValue<int>(valuePtr);
// for (auto input : node->inputIndex) {
// MS_LOG(INFO) << "node: " << node->name << " input tensor data
// type: " << GetValue<int>(valuePtr); for (auto input :
// node->inputIndex) {
// auto tensor = subGraph->allTensors[input].get();
// tensor->dataType = kNumberTypeUInt8;
// }
......@@ -159,7 +231,9 @@ schema::MetaGraphT *AnfExporter::Export(const FuncGraphPtr &funcGraph) {
return metaGraphT.release();
}
void AnfExporter::SetOpInputNode(const CNodePtr &cnode, schema::MetaGraphT *meta_graph, schema::CNodeT *fbNode) {
void AnfExporter::SetOpInputNode(const CNodePtr &cnode,
schema::MetaGraphT *meta_graph,
schema::CNodeT *fbNode) {
MS_ASSERT(nullptr != meta_graph);
MS_ASSERT(nullptr != fbNode);
if (cnode->inputs().size() <= 1) {
......@@ -172,6 +246,13 @@ void AnfExporter::SetOpInputNode(const CNodePtr &cnode, schema::MetaGraphT *meta
if (inputNode->isa<CNode>()) {
isGraphInput = false;
std::string inputName = inputNode->fullname_with_scope();
if (!mapRemoveGetItem_.empty()) {
for (auto name : mapRemoveGetItem_) {
if (name.first == inputName) {
inputName = inputName + "_o:" + std::to_string(name.second);
}
}
}
if (nodeIdMap.find(inputName) != nodeIdMap.end()) {
fbNode->inputIndex.emplace_back(nodeIdMap[inputName]);
}
......@@ -187,30 +268,38 @@ void AnfExporter::SetOpInputNode(const CNodePtr &cnode, schema::MetaGraphT *meta
auto paramTensor = std::make_unique<schema::TensorT>();
auto abstractBase = paramNode->abstract();
if (abstractBase == nullptr) {
MS_LOG(ERROR) << "Abstract of parameter is nullptr, " << paramNode->name();
MS_LOG(ERROR) << "Abstract of parameter is nullptr, "
<< paramNode->name();
MS_ASSERT(false);
return;
}
if (!utils::isa<abstract::AbstractTensorPtr>(abstractBase)) {
MS_LOG(ERROR) << "Abstract of parameter should be anstract tensor, " << paramNode->name();
MS_LOG(ERROR) << "Abstract of parameter should be anstract tensor, "
<< paramNode->name();
MS_ASSERT(false);
return;
}
auto abstractTensor = utils::cast<abstract::AbstractTensorPtr>(abstractBase);
auto abstractTensor =
utils::cast<abstract::AbstractTensorPtr>(abstractBase);
auto typePtr = abstractTensor->element()->GetTypeTrack();
MS_ASSERT(typePtr != nullptr);
paramTensor->dataType = typePtr->type_id();
if (!utils::isa<abstract::ShapePtr>(abstractTensor->BuildShape())) {
MS_LOG(ERROR) << "Shape of Abstract of parameter should be ShapePtr, " << paramNode->name();
MS_LOG(ERROR) << "Shape of Abstract of parameter should be ShapePtr, "
<< paramNode->name();
MS_ASSERT(false);
return;
}
paramTensor->dims = utils::cast<abstract::ShapePtr>(abstractTensor->BuildShape())->shape();
auto paramValue = std::dynamic_pointer_cast<ParamValueLite>(paramNode->default_param());
paramTensor->dims =
utils::cast<abstract::ShapePtr>(abstractTensor->BuildShape())
->shape();
auto paramValue =
std::dynamic_pointer_cast<ParamValueLite>(paramNode->default_param());
if (paramValue != nullptr) {
paramTensor->nodeType = schema::NodeType_ValueNode;
paramTensor->data.resize(paramValue->tensor_size());
memcpy(paramTensor->data.data(), paramValue->tensor_addr(), paramValue->tensor_size());
memcpy(paramTensor->data.data(), paramValue->tensor_addr(),
paramValue->tensor_size());
}
for (auto &ite : paramValue->quant_param()) {
auto quantPar = std::make_unique<schema::QuantParamT>();
......@@ -224,7 +313,8 @@ void AnfExporter::SetOpInputNode(const CNodePtr &cnode, schema::MetaGraphT *meta
paramTensor->quantParams.emplace_back(std::move(quantPar));
paramTensor->dataType = paramValue->tensor_type();
}
nodeIdMap[paramNode->fullname_with_scope()] = meta_graph->allTensors.size();
nodeIdMap[paramNode->fullname_with_scope()] =
meta_graph->allTensors.size();
fbNode->inputIndex.emplace_back(meta_graph->allTensors.size());
meta_graph->allTensors.emplace_back(std::move(paramTensor));
} else if (inputNode->isa<ValueNode>()) {
......@@ -233,15 +323,19 @@ void AnfExporter::SetOpInputNode(const CNodePtr &cnode, schema::MetaGraphT *meta
auto value = valueNode->value();
if (value->isa<lite::tensor::Tensor>()) {
auto valueAbstract = valueNode->abstract();
auto abstractTensor = utils::cast<abstract::AbstractTensorPtr>(valueAbstract);
auto abstractTensor =
utils::cast<abstract::AbstractTensorPtr>(valueAbstract);
auto typePtr = abstractTensor->element()->GetTypeTrack();
paramTensor->dataType = typePtr->type_id();
paramTensor->dims = utils::cast<abstract::ShapePtr>(abstractTensor->BuildShape())->shape();
paramTensor->dims =
utils::cast<abstract::ShapePtr>(abstractTensor->BuildShape())
->shape();
paramTensor->nodeType = schema::NodeType_ValueNode;
auto data = value->cast<lite::tensor::TensorPtr>();
paramTensor->data.resize(data->Size());
memcpy(paramTensor->data.data(), data->Data(), data->Size());
nodeIdMap[valueNode->fullname_with_scope()] = meta_graph->allTensors.size();
nodeIdMap[valueNode->fullname_with_scope()] =
meta_graph->allTensors.size();
fbNode->inputIndex.emplace_back(meta_graph->allTensors.size());
meta_graph->allTensors.emplace_back(std::move(paramTensor));
} else if (value->isa<mindspore::ValueSequeue>()) {
......@@ -257,8 +351,9 @@ void AnfExporter::SetOpInputNode(const CNodePtr &cnode, schema::MetaGraphT *meta
}
}
void AnfExporter::SetOpOutputNode(const std::vector<schema::TensorT *> &outputTensors, schema::MetaGraphT *graph,
schema::CNodeT *cnode) {
void AnfExporter::SetOpOutputNode(
const std::vector<schema::TensorT *> &outputTensors,
schema::MetaGraphT *graph, schema::CNodeT *cnode) {
MS_ASSERT(nullptr != graph);
MS_ASSERT(nullptr != cnode);
std::string cnodeName = cnode->name;
......
......@@ -22,6 +22,7 @@
#include <map>
#include <string>
#include <vector>
#include <memory>
#include "schema/inner/model_generated.h"
#include "ir/func_graph.h"
......@@ -34,10 +35,13 @@ class AnfExporter {
void SetOpOutputNode(const std::vector<schema::TensorT *> &outputTensors, schema::MetaGraphT *graph,
schema::CNodeT *cnode);
void SetOpInputNode(const CNodePtr &cnode, schema::MetaGraphT *meta_graph, schema::CNodeT *fbNode);
void RemoveIfMakeTuple(const CNodePtr &cnode);
bool RemoveIfTupleGetItem(const CNodePtr &cnode);
bool AddOutPutIfReturn(const std::unique_ptr<schema::MetaGraphT> &metaGraphT, const CNodePtr &cnode);
private:
std::map<std::string, int> nodeIdMap;
std::vector<schema::CNodeT *> graphInputNodes;
std::map<std::string, int> mapRemoveGetItem_;
};
schema::MetaGraphT *Export(const FuncGraphPtr &funcGraph);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
新手
引导
客服 返回
顶部