Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
magicwindyyd
mindspore
提交
00fa08ba
M
mindspore
项目概览
magicwindyyd
/
mindspore
与 Fork 源项目一致
Fork自
MindSpore / mindspore
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
mindspore
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
00fa08ba
编写于
8月 06, 2020
作者:
M
mindspore-ci-bot
提交者:
Gitee
8月 06, 2020
浏览文件
操作
浏览文件
下载
差异文件
!3936 [lite]compare,batch_to_space,depth_to_space,argmin,argmax support int8
Merge pull request !3936 from chenjianping/lite_dev
上级
4b2e26f1
32960a58
变更
26
展开全部
显示空白变更内容
内联
并排
Showing
26 changed file
with
1769 addition
and
566 deletion
+1769
-566
mindspore/lite/src/runtime/kernel/arm/fp32/arithmetic.h
mindspore/lite/src/runtime/kernel/arm/fp32/arithmetic.h
+1
-0
mindspore/lite/src/runtime/kernel/arm/int8/argminmax_int8.cc
mindspore/lite/src/runtime/kernel/arm/int8/argminmax_int8.cc
+37
-4
mindspore/lite/src/runtime/kernel/arm/int8/argminmax_int8.h
mindspore/lite/src/runtime/kernel/arm/int8/argminmax_int8.h
+4
-0
mindspore/lite/src/runtime/kernel/arm/int8/arithmetic_int8.cc
...spore/lite/src/runtime/kernel/arm/int8/arithmetic_int8.cc
+194
-0
mindspore/lite/src/runtime/kernel/arm/int8/arithmetic_int8.h
mindspore/lite/src/runtime/kernel/arm/int8/arithmetic_int8.h
+47
-0
mindspore/lite/src/runtime/kernel/arm/int8/batch_to_space_int8.cc
...e/lite/src/runtime/kernel/arm/int8/batch_to_space_int8.cc
+30
-6
mindspore/lite/src/runtime/kernel/arm/int8/batch_to_space_int8.h
...re/lite/src/runtime/kernel/arm/int8/batch_to_space_int8.h
+3
-0
mindspore/lite/src/runtime/kernel/arm/int8/depth_to_space_int8.cc
...e/lite/src/runtime/kernel/arm/int8/depth_to_space_int8.cc
+13
-5
mindspore/lite/src/runtime/kernel/arm/int8/depth_to_space_int8.h
...re/lite/src/runtime/kernel/arm/int8/depth_to_space_int8.h
+3
-0
mindspore/lite/src/runtime/kernel/arm/opclib/arg_min_max.cc
mindspore/lite/src/runtime/kernel/arm/opclib/arg_min_max.cc
+0
-50
mindspore/lite/src/runtime/kernel/arm/opclib/arg_min_max.h
mindspore/lite/src/runtime/kernel/arm/opclib/arg_min_max.h
+1
-0
mindspore/lite/src/runtime/kernel/arm/opclib/depth_to_space.h
...spore/lite/src/runtime/kernel/arm/opclib/depth_to_space.h
+1
-13
mindspore/lite/src/runtime/kernel/arm/opclib/depth_to_space_parameter.h
.../src/runtime/kernel/arm/opclib/depth_to_space_parameter.h
+32
-0
mindspore/lite/src/runtime/kernel/arm/opclib/int8/arg_min_max.cc
...re/lite/src/runtime/kernel/arm/opclib/int8/arg_min_max.cc
+0
-488
mindspore/lite/src/runtime/kernel/arm/opclib/int8/arg_min_max_int8.cc
...te/src/runtime/kernel/arm/opclib/int8/arg_min_max_int8.cc
+221
-0
mindspore/lite/src/runtime/kernel/arm/opclib/int8/arg_min_max_int8.h
...ite/src/runtime/kernel/arm/opclib/int8/arg_min_max_int8.h
+32
-0
mindspore/lite/src/runtime/kernel/arm/opclib/int8/arithmetic_int8.cc
...ite/src/runtime/kernel/arm/opclib/int8/arithmetic_int8.cc
+63
-0
mindspore/lite/src/runtime/kernel/arm/opclib/int8/arithmetic_int8.h
...lite/src/runtime/kernel/arm/opclib/int8/arithmetic_int8.h
+32
-0
mindspore/lite/src/runtime/kernel/arm/opclib/int8/batch_to_space_int8.cc
...src/runtime/kernel/arm/opclib/int8/batch_to_space_int8.cc
+111
-0
mindspore/lite/src/runtime/kernel/arm/opclib/int8/batch_to_space_int8.h
.../src/runtime/kernel/arm/opclib/int8/batch_to_space_int8.h
+25
-0
mindspore/lite/src/runtime/kernel/arm/opclib/int8/depth_to_space_int8.cc
...src/runtime/kernel/arm/opclib/int8/depth_to_space_int8.cc
+51
-0
mindspore/lite/src/runtime/kernel/arm/opclib/int8/depth_to_space_int8.h
.../src/runtime/kernel/arm/opclib/int8/depth_to_space_int8.h
+24
-0
mindspore/lite/test/ut/src/runtime/kernel/arm/fp32/argminmax_fp32_test.cc
...est/ut/src/runtime/kernel/arm/fp32/argminmax_fp32_test.cc
+328
-0
mindspore/lite/test/ut/src/runtime/kernel/arm/fp32/batch_to_space_fp32_test.cc
...t/src/runtime/kernel/arm/fp32/batch_to_space_fp32_test.cc
+197
-0
mindspore/lite/test/ut/src/runtime/kernel/arm/fp32/crop_fp32_test.cc
...ite/test/ut/src/runtime/kernel/arm/fp32/crop_fp32_test.cc
+234
-0
mindspore/lite/test/ut/src/runtime/kernel/arm/fp32/depth_to_space_fp32_test.cc
...t/src/runtime/kernel/arm/fp32/depth_to_space_fp32_test.cc
+85
-0
未找到文件。
mindspore/lite/src/runtime/kernel/arm/fp32/arithmetic.h
浏览文件 @
00fa08ba
...
...
@@ -90,6 +90,7 @@ class ArithmeticCPUKernel : public LiteKernel {
case
PrimitiveType_FloorMod
:
arithmetic_run_
=
ElementFloorMod
;
arithmetic_broadcast_run_
=
BroadcastFloorMod
;
break
;
case
PrimitiveType_Equal
:
arithmetic_run_
=
ElementEqual
;
arithmetic_broadcast_run_
=
BroadcastEqual
;
...
...
mindspore/lite/src/runtime/kernel/arm/int8/argminmax_int8.cc
浏览文件 @
00fa08ba
...
...
@@ -17,7 +17,7 @@
#include <vector>
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/kernel/arm/opclib/
arg_min_max
.h"
#include "src/runtime/kernel/arm/opclib/
int8/arg_min_max_int8
.h"
#include "include/errorcode.h"
using
mindspore
::
lite
::
RET_OK
;
...
...
@@ -31,12 +31,45 @@ int ArgMinMaxInt8CPUKernel::Init() {
}
auto
param
=
reinterpret_cast
<
ArgMinMaxParameter
*>
(
opParameter
);
param
->
data_type_
=
kNumberTypeInt8
;
auto
*
input_tensor
=
inputs_
.
at
(
kInputIndex
);
auto
in_quant_args
=
input_tensor
->
GetQuantParams
();
in_quant_arg_
.
scale_
=
in_quant_args
.
front
().
scale
;
in_quant_arg_
.
zp_
=
in_quant_args
.
front
().
zeroPoint
;
auto
*
out_tensor
=
outputs_
.
at
(
kOutputIndex
);
auto
out_quant_args
=
out_tensor
->
GetQuantParams
();
out_quant_arg_
.
scale_
=
out_quant_args
.
front
().
scale
;
out_quant_arg_
.
zp_
=
out_quant_args
.
front
().
zeroPoint
;
return
RET_OK
;
}
int
ArgMinMaxInt8CPUKernel
::
Run
()
{
auto
ret
=
ArgMinMaxBaseCPUKernel
::
Run
();
FreeTmpMemory
();
return
ret
;
auto
input
=
inputs_
.
at
(
0
);
const
int8_t
*
input_data
=
reinterpret_cast
<
const
int8_t
*>
(
inputs_
.
at
(
0
)
->
Data
());
int8_t
*
output_data
=
reinterpret_cast
<
int8_t
*>
(
outputs_
.
at
(
0
)
->
Data
());
auto
in_shape
=
input
->
shape
().
data
();
auto
param
=
reinterpret_cast
<
ArgMinMaxParameter
*>
(
opParameter
);
if
(
param
->
topk_
==
1
)
{
ArgMinMaxQuant
(
input_data
,
output_data
,
in_shape
,
param
,
&
in_quant_arg_
,
&
out_quant_arg_
);
return
RET_OK
;
}
switch
(
param
->
axis_
)
{
case
0
:
ArgMinMaxDim0
(
input_data
,
output_data
,
in_shape
,
param
,
&
in_quant_arg_
,
&
out_quant_arg_
);
break
;
case
1
:
ArgMinMaxDim1
(
input_data
,
output_data
,
in_shape
,
param
,
&
in_quant_arg_
,
&
out_quant_arg_
);
break
;
case
2
:
ArgMinMaxDim2
(
input_data
,
output_data
,
in_shape
,
param
,
&
in_quant_arg_
,
&
out_quant_arg_
);
break
;
case
3
:
ArgMinMaxDim3
(
input_data
,
output_data
,
in_shape
,
param
,
&
in_quant_arg_
,
&
out_quant_arg_
);
break
;
}
return
RET_OK
;
}
}
// namespace mindspore::kernel
mindspore/lite/src/runtime/kernel/arm/int8/argminmax_int8.h
浏览文件 @
00fa08ba
...
...
@@ -18,6 +18,7 @@
#include <vector>
#include "src/runtime/kernel/arm/base/arg_min_max_base.h"
#include "src/runtime/kernel/arm/opclib/quantization/quantize.h"
namespace
mindspore
::
kernel
{
class
ArgMinMaxInt8CPUKernel
:
public
ArgMinMaxBaseCPUKernel
{
...
...
@@ -31,6 +32,9 @@ class ArgMinMaxInt8CPUKernel : public ArgMinMaxBaseCPUKernel {
int
Init
()
override
;
int
ReSize
()
override
{
return
0
;
}
int
Run
()
override
;
private:
QuantArg
in_quant_arg_
;
QuantArg
out_quant_arg_
;
};
}
// namespace mindspore::kernel
...
...
mindspore/lite/src/runtime/kernel/arm/int8/arithmetic_int8.cc
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/int8/arithmetic_int8.h"
#include "src/runtime/kernel/arm/opclib/int8/arithmetic_int8.h"
#include "src/runtime/kernel/arm/opclib/arithmetic_common.h"
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/runtime_api.h"
#include "include/errorcode.h"
using
mindspore
::
kernel
::
KERNEL_ARCH
::
kCPU
;
using
mindspore
::
lite
::
KernelRegistrar
;
using
mindspore
::
lite
::
RET_PARAM_INVALID
;
using
mindspore
::
lite
::
RET_ERROR
;
using
mindspore
::
lite
::
RET_OK
;
using
mindspore
::
schema
::
PrimitiveType_Equal
;
using
mindspore
::
schema
::
PrimitiveType_NotEqual
;
using
mindspore
::
schema
::
PrimitiveType_LessEqual
;
using
mindspore
::
schema
::
PrimitiveType_Greater
;
using
mindspore
::
schema
::
PrimitiveType_GreaterEqual
;
using
mindspore
::
schema
::
PrimitiveType_Less
;
namespace
mindspore
::
kernel
{
namespace
{
int
ArithmeticsInt8Launch
(
int
thread_id
,
LiteParallelGroupEnv
*
penv
,
void
*
cdata
)
{
auto
arithmetic_kernel
=
reinterpret_cast
<
ArithmeticInt8CPUKernel
*>
(
cdata
);
auto
error_code
=
arithmetic_kernel
->
DoArithmetic
(
thread_id
);
if
(
error_code
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"ArithmeticsRun error thread_id["
<<
thread_id
<<
"] error_code["
<<
error_code
<<
"]"
;
return
RET_ERROR
;
}
return
RET_OK
;
}
}
// namespace
ArithmeticInt8CPUKernel
::~
ArithmeticInt8CPUKernel
()
{
auto
param
=
reinterpret_cast
<
ArithmeticParameter
*>
(
opParameter
);
if
(
!
param
->
broadcasting_
)
{
return
;
}
if
(
context_
->
allocator
!=
nullptr
)
{
if
(
tile_data0_
!=
nullptr
)
{
context_
->
allocator
->
Free
(
tile_data0_
);
}
if
(
tile_data1_
!=
nullptr
)
{
context_
->
allocator
->
Free
(
tile_data1_
);
}
}
else
{
if
(
tile_data0_
!=
nullptr
)
{
free
(
tile_data0_
);
}
if
(
tile_data1_
!=
nullptr
)
{
free
(
tile_data1_
);
}
}
tile_data0_
=
nullptr
;
tile_data1_
=
nullptr
;
}
int
ArithmeticInt8CPUKernel
::
Init
()
{
switch
(
opParameter
->
type_
)
{
case
PrimitiveType_Equal
:
arithmetic_run_
=
ElementEqual
;
break
;
case
PrimitiveType_NotEqual
:
arithmetic_run_
=
ElementNotEqual
;
break
;
case
PrimitiveType_Less
:
arithmetic_run_
=
ElementEqual
;
break
;
case
PrimitiveType_LessEqual
:
arithmetic_run_
=
ElementNotEqual
;
break
;
case
PrimitiveType_Greater
:
arithmetic_run_
=
ElementGreater
;
break
;
case
PrimitiveType_GreaterEqual
:
arithmetic_run_
=
ElementGreaterEqual
;
break
;
default:
MS_LOG
(
ERROR
)
<<
"Error Operator type "
<<
opParameter
->
type_
;
arithmetic_run_
=
nullptr
;
return
RET_PARAM_INVALID
;
}
auto
data_size
=
outputs_
[
0
]
->
Size
();
auto
param
=
reinterpret_cast
<
ArithmeticParameter
*>
(
opParameter
);
if
(
param
->
broadcasting_
)
{
if
(
context_
->
allocator
!=
nullptr
)
{
tile_data0_
=
reinterpret_cast
<
int8_t
*>
(
context_
->
allocator
->
Malloc
(
data_size
));
tile_data1_
=
reinterpret_cast
<
int8_t
*>
(
context_
->
allocator
->
Malloc
(
data_size
));
}
else
{
tile_data0_
=
reinterpret_cast
<
int8_t
*>
(
malloc
(
data_size
));
tile_data1_
=
reinterpret_cast
<
int8_t
*>
(
malloc
(
data_size
));
}
}
else
{
tile_data0_
=
nullptr
;
tile_data1_
=
nullptr
;
}
return
RET_OK
;
}
int
ArithmeticInt8CPUKernel
::
ReSize
()
{
return
RET_OK
;
}
int
ArithmeticInt8CPUKernel
::
DoArithmetic
(
int
thread_id
)
{
auto
input0_data
=
reinterpret_cast
<
int8_t
*>
(
inputs_
[
0
]
->
Data
());
auto
input1_data1
=
reinterpret_cast
<
int8_t
*>
(
inputs_
[
1
]
->
Data
());
auto
output_data
=
reinterpret_cast
<
int8_t
*>
(
outputs_
[
0
]
->
Data
());
auto
element_num
=
outputs_
[
0
]
->
ElementsNum
();
auto
param
=
reinterpret_cast
<
ArithmeticParameter
*>
(
opParameter
);
if
(
param
->
broadcasting_
&&
arithmetic_run_
!=
nullptr
)
{
MS_ASSERT
(
thread_count_
!=
0
);
int
stride
=
UP_DIV
(
element_num
,
thread_count_
);
int
count
=
MSMIN
(
stride
,
element_num
-
stride
*
thread_id
);
int
error_code
=
arithmetic_run_
(
tile_data0_
+
stride
*
thread_id
,
tile_data1_
+
stride
*
thread_id
,
output_data
+
stride
*
thread_id
,
count
);
if
(
error_code
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"Arithmetic run fail! ret: "
<<
error_code
;
return
RET_ERROR
;
}
}
else
if
(
arithmetic_run_
!=
nullptr
)
{
int
error_code
=
arithmetic_run_
(
input0_data
,
input1_data1
,
output_data
,
element_num
);
if
(
error_code
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"Arithmetic run fail!ret: "
<<
error_code
;
return
RET_ERROR
;
}
}
else
{
MS_LOG
(
ERROR
)
<<
"arithmetic_run function is nullptr!"
;
return
RET_ERROR
;
}
return
RET_OK
;
}
int
ArithmeticInt8CPUKernel
::
Run
()
{
auto
param
=
reinterpret_cast
<
ArithmeticParameter
*>
(
opParameter
);
if
(
param
->
broadcasting_
)
{
auto
input_data0
=
reinterpret_cast
<
int8_t
*>
(
inputs_
[
0
]
->
Data
());
auto
input_data1
=
reinterpret_cast
<
int8_t
*>
(
inputs_
[
1
]
->
Data
());
TileDimensionsInt8
(
input_data0
,
input_data1
,
tile_data0_
,
tile_data1_
,
param
);
}
int
error_code
=
LiteBackendParallelLaunch
(
ArithmeticsInt8Launch
,
this
,
thread_count_
);
if
(
error_code
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"Arithmetic launch function fail! ret: "
<<
error_code
;
return
RET_ERROR
;
}
return
RET_OK
;
}
kernel
::
LiteKernel
*
CpuArithmeticInt8KernelCreator
(
const
std
::
vector
<
lite
::
tensor
::
Tensor
*>
&
inputs
,
const
std
::
vector
<
lite
::
tensor
::
Tensor
*>
&
outputs
,
OpParameter
*
parameter
,
const
lite
::
Context
*
ctx
,
const
kernel
::
KernelKey
&
desc
)
{
if
(
parameter
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"Input parameter is null!"
;
return
nullptr
;
}
auto
kernel
=
new
(
std
::
nothrow
)
ArithmeticInt8CPUKernel
(
parameter
,
inputs
,
outputs
,
ctx
);
if
(
kernel
==
nullptr
)
{
MS_LOG
(
ERROR
)
<<
"Create ArithmeticInt8CPUKernel failed, name: "
<<
parameter
->
name_
;
return
nullptr
;
}
auto
ret
=
kernel
->
Init
();
if
(
ret
!=
RET_OK
)
{
MS_LOG
(
ERROR
)
<<
"Init kernel failed, name: "
<<
parameter
->
name_
<<
", type: "
<<
schema
::
EnumNamePrimitiveType
(
static_cast
<
schema
::
PrimitiveType
>
(
parameter
->
type_
));
delete
kernel
;
return
nullptr
;
}
return
kernel
;
}
REG_KERNEL
(
kCPU
,
kNumberTypeInt8
,
PrimitiveType_Equal
,
CpuArithmeticInt8KernelCreator
)
REG_KERNEL
(
kCPU
,
kNumberTypeInt8
,
PrimitiveType_NotEqual
,
CpuArithmeticInt8KernelCreator
)
REG_KERNEL
(
kCPU
,
kNumberTypeInt8
,
PrimitiveType_Less
,
CpuArithmeticInt8KernelCreator
)
REG_KERNEL
(
kCPU
,
kNumberTypeInt8
,
PrimitiveType_LessEqual
,
CpuArithmeticInt8KernelCreator
)
REG_KERNEL
(
kCPU
,
kNumberTypeInt8
,
PrimitiveType_Greater
,
CpuArithmeticInt8KernelCreator
)
REG_KERNEL
(
kCPU
,
kNumberTypeInt8
,
PrimitiveType_GreaterEqual
,
CpuArithmeticInt8KernelCreator
)
}
// namespace mindspore::kernel
mindspore/lite/src/runtime/kernel/arm/int8/arithmetic_int8.h
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_ARITHMETIC_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_ARITHMETIC_INT8_H_
#include <vector>
#include "src/lite_kernel.h"
#include "schema/model_generated.h"
namespace
mindspore
::
kernel
{
class
ArithmeticInt8CPUKernel
:
public
LiteKernel
{
typedef
int
(
*
ArithmeticRunInt8
)(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
);
public:
ArithmeticInt8CPUKernel
(
OpParameter
*
parameter
,
const
std
::
vector
<
lite
::
tensor
::
Tensor
*>
&
inputs
,
const
std
::
vector
<
lite
::
tensor
::
Tensor
*>
&
outputs
,
const
lite
::
Context
*
ctx
)
:
LiteKernel
(
parameter
,
inputs
,
outputs
),
thread_count_
(
ctx
->
thread_num_
),
context_
(
ctx
)
{}
~
ArithmeticInt8CPUKernel
();
int
Init
()
override
;
int
ReSize
()
override
;
int
Run
()
override
;
int
DoArithmetic
(
int
thread_id
);
private:
int
thread_count_
;
int8_t
*
tile_data0_
;
int8_t
*
tile_data1_
;
const
lite
::
Context
*
context_
;
ArithmeticRunInt8
arithmetic_run_
;
};
}
// namespace mindspore::kernel
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_INT8_ARITHMETIC_INT8_H_
mindspore/lite/src/runtime/kernel/arm/int8/batch_to_space_int8.cc
浏览文件 @
00fa08ba
...
...
@@ -18,13 +18,27 @@
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/kernel/arm/opclib/batch_to_space.h"
#include "src/runtime/kernel/arm/opclib/int8/batch_to_space_int8.h"
#include "include/errorcode.h"
using
mindspore
::
lite
::
RET_OK
;
namespace
mindspore
::
kernel
{
int
BatchToSpaceInt8CPUKernel
::
Init
()
{
return
BatchToSpaceBaseCPUKernel
::
Init
();
auto
ret
=
BatchToSpaceBaseCPUKernel
::
Init
();
if
(
ret
!=
RET_OK
)
{
return
ret
;
}
auto
*
input_tensor
=
inputs_
.
at
(
kInputIndex
);
auto
in_quant_args
=
input_tensor
->
GetQuantParams
();
in_quant_arg_
.
scale_
=
in_quant_args
.
front
().
scale
;
in_quant_arg_
.
zp_
=
in_quant_args
.
front
().
zeroPoint
;
auto
*
out_tensor
=
outputs_
.
at
(
kOutputIndex
);
auto
out_quant_args
=
out_tensor
->
GetQuantParams
();
out_quant_arg_
.
scale_
=
out_quant_args
.
front
().
scale
;
out_quant_arg_
.
zp_
=
out_quant_args
.
front
().
zeroPoint
;
return
RET_OK
;
}
int
BatchToSpaceInt8CPUKernel
::
Run
()
{
...
...
@@ -36,6 +50,7 @@ int BatchToSpaceInt8CPUKernel::Run() {
auto
out_shape
=
output
->
shape
();
BatchToSpaceParameter
*
param
=
reinterpret_cast
<
BatchToSpaceParameter
*>
(
this
->
opParameter
);
if
(
in_quant_arg_
.
scale_
==
out_quant_arg_
.
scale_
&&
in_quant_arg_
.
zp_
==
out_quant_arg_
.
zp_
)
{
if
(
IsNoCrop
())
{
BatchToSpaceNoCropForNHWC
(
input_data
,
output_data
,
in_shape
.
data
(),
out_shape
[
0
],
param
->
block_shape_
,
sizeof
(
int8_t
));
...
...
@@ -43,6 +58,15 @@ int BatchToSpaceInt8CPUKernel::Run() {
BatchToSpaceForNHWC
(
input_data
,
output_data
,
in_shape
.
data
(),
out_shape
[
0
],
param
->
block_shape_
,
param
->
crops_
,
sizeof
(
int8_t
));
}
}
else
{
if
(
IsNoCrop
())
{
BatchToSpaceNoCropForNHWC
(
input_data
,
output_data
,
in_shape
.
data
(),
out_shape
[
0
],
param
->
block_shape_
,
&
in_quant_arg_
,
&
out_quant_arg_
);
}
else
{
BatchToSpaceForNHWC
(
input_data
,
output_data
,
in_shape
.
data
(),
out_shape
[
0
],
param
->
block_shape_
,
param
->
crops_
,
&
in_quant_arg_
,
&
out_quant_arg_
);
}
}
return
RET_OK
;
}
...
...
mindspore/lite/src/runtime/kernel/arm/int8/batch_to_space_int8.h
浏览文件 @
00fa08ba
...
...
@@ -31,6 +31,9 @@ class BatchToSpaceInt8CPUKernel : public BatchToSpaceBaseCPUKernel {
int
Init
()
override
;
int
ReSize
()
override
{
return
0
;
}
int
Run
()
override
;
private:
QuantArg
in_quant_arg_
;
QuantArg
out_quant_arg_
;
};
}
// namespace mindspore::kernel
...
...
mindspore/lite/src/runtime/kernel/arm/int8/depth_to_space_int8.cc
浏览文件 @
00fa08ba
...
...
@@ -18,6 +18,7 @@
#include "schema/model_generated.h"
#include "src/kernel_registry.h"
#include "src/runtime/kernel/arm/opclib/depth_to_space.h"
#include "src/runtime/kernel/arm/opclib/int8/depth_to_space_int8.h"
#include "include/errorcode.h"
using
mindspore
::
lite
::
RET_OK
;
...
...
@@ -31,6 +32,16 @@ int DepthToSpaceInt8CPUKernel::Init() {
}
DepthToSpaceParameter
*
param
=
reinterpret_cast
<
DepthToSpaceParameter
*>
(
opParameter
);
param
->
data_type_size_
=
sizeof
(
int8_t
);
auto
*
input_tensor
=
inputs_
.
at
(
kInputIndex
);
auto
in_quant_args
=
input_tensor
->
GetQuantParams
();
in_quant_arg_
.
scale_
=
in_quant_args
.
front
().
scale
;
in_quant_arg_
.
zp_
=
in_quant_args
.
front
().
zeroPoint
;
auto
*
out_tensor
=
outputs_
.
at
(
kOutputIndex
);
auto
out_quant_args
=
out_tensor
->
GetQuantParams
();
out_quant_arg_
.
scale_
=
out_quant_args
.
front
().
scale
;
out_quant_arg_
.
zp_
=
out_quant_args
.
front
().
zeroPoint
;
return
RET_OK
;
}
...
...
@@ -41,14 +52,11 @@ int DepthToSpaceInt8CPUKernel::Run() {
int8_t
*
output_data
=
reinterpret_cast
<
int8_t
*>
(
output
->
Data
());
auto
in_shape
=
input
->
shape
();
DepthToSpaceParameter
*
param
=
reinterpret_cast
<
DepthToSpaceParameter
*>
(
opParameter
);
if
(
in
put
->
GetFormat
()
==
schema
::
Format_NHWC
)
{
if
(
in
_quant_arg_
.
scale_
==
out_quant_arg_
.
scale_
&&
in_quant_arg_
.
zp_
==
out_quant_arg_
.
zp_
)
{
DepthToSpaceForNHWC
(
input_data
,
output_data
,
in_shape
.
data
(),
param
);
return
RET_OK
;
}
else
{
MS_LOG
(
ERROR
)
<<
"Depth_to_space only support NHWC now!"
;
return
RET_ERROR
;
DepthToSpaceForNHWC
(
input_data
,
output_data
,
in_shape
.
data
(),
param
,
&
in_quant_arg_
,
&
out_quant_arg_
);
}
return
RET_OK
;
}
}
// namespace mindspore::kernel
mindspore/lite/src/runtime/kernel/arm/int8/depth_to_space_int8.h
浏览文件 @
00fa08ba
...
...
@@ -31,6 +31,9 @@ class DepthToSpaceInt8CPUKernel : public DepthToSpaceBaseCPUKernel {
int
Init
()
override
;
int
ReSize
()
override
{
return
0
;
}
int
Run
()
override
;
private:
QuantArg
in_quant_arg_
;
QuantArg
out_quant_arg_
;
};
}
// namespace mindspore::kernel
...
...
mindspore/lite/src/runtime/kernel/arm/opclib/arg_min_max.cc
浏览文件 @
00fa08ba
...
...
@@ -15,10 +15,8 @@
*/
#include "src/runtime/kernel/arm/opclib/arg_min_max.h"
#include "src/runtime/kernel/arm/opclib/fp32/arg_min_max.h"
#include "src/runtime/kernel/arm/opclib/int8/arg_min_max.h"
#define FLOAT_DATA_TYPE 43
#define INT8_DATA_TYPE 32
void
GetCalcParameter
(
const
int
*
shape
,
int
dims_number
,
int
axis
,
int
*
pre_axis_count
,
int
*
axis_count
,
int
*
after_axis_count
)
{
...
...
@@ -51,16 +49,6 @@ void ArgMinMaxTopk1(const void *input, void *output, const int *shape, ArgMinMax
}
break
;
}
case
INT8_DATA_TYPE
:
{
if
(
param
->
get_max_
)
{
ArgMax
(
reinterpret_cast
<
const
int8_t
*>
(
input
),
reinterpret_cast
<
int8_t
*>
(
output
),
param
,
pre_axis_count
,
axis_count
,
after_axis_count
);
}
else
{
ArgMin
(
reinterpret_cast
<
const
int8_t
*>
(
input
),
reinterpret_cast
<
int8_t
*>
(
output
),
param
,
pre_axis_count
,
axis_count
,
after_axis_count
);
}
break
;
}
default:
break
;
}
...
...
@@ -100,40 +88,6 @@ void ArgMinMaxTopknFp32(const float *input, float *output, const int *in_shape,
}
}
void
ArgMinMaxTopknInt8
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
)
{
if
(
param
->
get_max_
)
{
switch
(
param
->
axis_
)
{
case
0
:
ArgMaxDim0
(
input
,
output
,
in_shape
,
param
);
break
;
case
1
:
ArgMaxDim1
(
input
,
output
,
in_shape
,
param
);
break
;
case
2
:
ArgMaxDim2
(
input
,
output
,
in_shape
,
param
);
break
;
case
3
:
ArgMaxDim3
(
input
,
output
,
in_shape
,
param
);
break
;
}
}
else
{
switch
(
param
->
axis_
)
{
case
0
:
ArgMinDim0
(
input
,
output
,
in_shape
,
param
);
break
;
case
1
:
ArgMinDim1
(
input
,
output
,
in_shape
,
param
);
break
;
case
2
:
ArgMinDim2
(
input
,
output
,
in_shape
,
param
);
break
;
case
3
:
ArgMinDim3
(
input
,
output
,
in_shape
,
param
);
break
;
}
}
}
void
ArgMinMax
(
const
void
*
input
,
void
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
)
{
if
(
param
->
topk_
==
1
)
{
ArgMinMaxTopk1
(
input
,
output
,
in_shape
,
param
);
...
...
@@ -145,10 +99,6 @@ void ArgMinMax(const void *input, void *output, const int *in_shape, ArgMinMaxPa
ArgMinMaxTopknFp32
(
reinterpret_cast
<
const
float
*>
(
input
),
reinterpret_cast
<
float
*>
(
output
),
in_shape
,
param
);
return
;
}
case
INT8_DATA_TYPE
:
{
ArgMinMaxTopknInt8
(
reinterpret_cast
<
const
int8_t
*>
(
input
),
reinterpret_cast
<
int8_t
*>
(
output
),
in_shape
,
param
);
return
;
}
default:
break
;
}
...
...
mindspore/lite/src/runtime/kernel/arm/opclib/arg_min_max.h
浏览文件 @
00fa08ba
...
...
@@ -18,6 +18,7 @@
#include "src/runtime/kernel/arm/opclib/op_base.h"
#include "src/runtime/kernel/arm/opclib/arg_min_max_parameter.h"
#include "src/runtime/kernel/arm/opclib/quantization/quantize.h"
void
ArgMinMax
(
const
void
*
input
,
void
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_ARG_MIN_MAX_H_
mindspore/lite/src/runtime/kernel/arm/opclib/depth_to_space.h
浏览文件 @
00fa08ba
...
...
@@ -15,19 +15,7 @@
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_DEPTH_TO_SPACE_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_DEPTH_TO_SPACE_H_
#include "src/runtime/kernel/arm/opclib/op_base.h"
struct
DepthToSpaceParameter
{
OpParameter
op_parameter_
;
int32_t
block_size_
;
int32_t
in_stride_dim0_
;
int32_t
in_stride_dim1_
;
int32_t
in_stride_dim2_
;
int32_t
out_stride_dim0_
;
int32_t
out_stride_dim1_
;
int32_t
out_stride_dim2_
;
uint8_t
data_type_size_
;
};
#include "src/runtime/kernel/arm/opclib/depth_to_space_parameter.h"
void
DepthToSpaceForNHWC
(
const
void
*
input
,
void
*
output
,
int
*
in_shape
,
DepthToSpaceParameter
*
param
);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_DEPTH_TO_SPACE_H_
mindspore/lite/src/runtime/kernel/arm/opclib/depth_to_space_parameter.h
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_DEPTH_TO_SPACE_PARAMETER_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_DEPTH_TO_SPACE_PARAMETER_H_
#include "src/runtime/kernel/arm/opclib/op_base.h"
struct
DepthToSpaceParameter
{
OpParameter
op_parameter_
;
int32_t
block_size_
;
int32_t
in_stride_dim0_
;
int32_t
in_stride_dim1_
;
int32_t
in_stride_dim2_
;
int32_t
out_stride_dim0_
;
int32_t
out_stride_dim1_
;
int32_t
out_stride_dim2_
;
uint8_t
data_type_size_
;
};
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_DEPTH_TO_SPACE_PARAMETER_H_
mindspore/lite/src/runtime/kernel/arm/opclib/int8/arg_min_max.cc
已删除
100644 → 0
浏览文件 @
4b2e26f1
此差异已折叠。
点击以展开。
mindspore/lite/src/runtime/kernel/arm/opclib/int8/arg_min_max_int8.cc
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/opclib/int8/arg_min_max_int8.h"
#include <float.h>
void
CalcParameter
(
const
int
*
shape
,
int
dims_number
,
int
axis
,
int
*
pre_axis_count
,
int
*
axis_count
,
int
*
after_axis_count
)
{
*
pre_axis_count
=
1
;
for
(
int
i
=
0
;
i
<
axis
;
++
i
)
{
*
pre_axis_count
=
(
*
pre_axis_count
)
*
shape
[
i
];
}
*
axis_count
=
shape
[
axis
];
*
after_axis_count
=
1
;
for
(
int
i
=
axis
+
1
;
i
<
dims_number
;
++
i
)
{
*
after_axis_count
=
(
*
after_axis_count
)
*
shape
[
i
];
}
}
void
ArgMinMaxQuant
(
const
int8_t
*
input
,
int8_t
*
output
,
ArgMinMaxParameter
*
param
,
int
pre_axis_count
,
int
axis_count
,
int
after_axis_count
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
)
{
bool
out_value
=
param
->
out_value_
;
float
output_inverse_scale
=
1.
f
/
out_quant_arg
->
scale_
;
float
bias
=
-
in_quant_arg
->
zp_
*
in_quant_arg
->
scale_
;
int32_t
output_zp
=
out_quant_arg
->
zp_
;
for
(
int
i
=
0
;
i
<
pre_axis_count
;
++
i
)
{
size_t
output_offset
=
i
*
after_axis_count
;
size_t
input_offset
=
output_offset
*
axis_count
;
for
(
int
j
=
0
;
j
<
after_axis_count
;
++
j
)
{
float
value
=
-
FLT_MAX
;
if
(
!
param
->
get_max_
)
{
value
=
FLT_MAX
;
}
float
index
=
0.0
f
;
for
(
int
k
=
0
;
k
<
axis_count
;
++
k
)
{
float
value_tmp
=
input
[
input_offset
+
k
*
after_axis_count
+
j
]
*
in_quant_arg
->
scale_
+
bias
;
if
(
param
->
get_max_
)
{
if
(
value_tmp
>
value
)
{
value
=
value_tmp
;
index
=
k
;
}
}
else
{
if
(
value_tmp
<
value
)
{
value
=
value_tmp
;
index
=
k
;
}
}
}
float
real_out
=
out_value
?
value
:
index
;
output
[
output_offset
+
j
]
=
real_out
*
output_inverse_scale
+
output_zp
;
}
}
}
void
ArgMinMaxQuant
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
)
{
int
pre_axis_count
=
1
;
int
axis_count
=
1
;
int
after_axis_count
=
1
;
CalcParameter
(
in_shape
,
param
->
dims_size_
,
param
->
axis_
,
&
pre_axis_count
,
&
axis_count
,
&
after_axis_count
);
ArgMinMaxQuant
(
input
,
output
,
param
,
pre_axis_count
,
axis_count
,
after_axis_count
,
in_quant_arg
,
out_quant_arg
);
return
;
}
int
ArgCompareAscInt8
(
const
void
*
a
,
const
void
*
b
)
{
return
reinterpret_cast
<
const
ArgElement
*>
(
a
)
->
data_
.
f_data_
-
reinterpret_cast
<
const
ArgElement
*>
(
b
)
->
data_
.
f_data_
;
}
int
ArgCompareDescInt8
(
const
void
*
a
,
const
void
*
b
)
{
return
reinterpret_cast
<
const
ArgElement
*>
(
b
)
->
data_
.
f_data_
-
reinterpret_cast
<
const
ArgElement
*>
(
a
)
->
data_
.
f_data_
;
}
int8_t
GetInt8Output
(
float
real_out
,
float
output_inverse_scale
,
int32_t
output_zp
)
{
return
real_out
*
output_inverse_scale
+
output_zp
;
}
void
ArgMinMaxDim0
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
)
{
bool
out_value
=
param
->
out_value_
;
float
output_inverse_scale
=
1.
f
/
out_quant_arg
->
scale_
;
float
bias
=
-
in_quant_arg
->
zp_
*
in_quant_arg
->
scale_
;
int32_t
output_zp
=
out_quant_arg
->
zp_
;
for
(
int32_t
i
=
0
;
i
<
param
->
in_strides_
[
0
];
++
i
)
{
for
(
int
j
=
0
;
j
<
in_shape
[
0
];
++
j
)
{
size_t
offset
=
param
->
in_strides_
[
0
]
*
j
+
i
;
param
->
arg_elements_
[
j
].
index_
=
j
;
param
->
arg_elements_
[
j
].
data_
.
f_data_
=
input
[
offset
]
*
in_quant_arg
->
scale_
+
bias
;
}
if
(
param
->
get_max_
)
{
qsort
(
param
->
arg_elements_
,
in_shape
[
0
],
sizeof
(
ArgElement
),
ArgCompareDescInt8
);
}
else
{
qsort
(
param
->
arg_elements_
,
in_shape
[
0
],
sizeof
(
ArgElement
),
ArgCompareAscInt8
);
}
for
(
int
j
=
0
;
j
<
param
->
topk_
;
++
j
)
{
size_t
out_offset
=
j
*
param
->
out_strides_
[
0
]
+
i
;
float
real_out
=
out_value
?
param
->
arg_elements_
[
j
].
data_
.
f_data_
:
param
->
arg_elements_
[
j
].
index_
;
output
[
out_offset
]
=
GetInt8Output
(
real_out
,
output_inverse_scale
,
output_zp
);
}
}
}
void
ArgMinMaxDim1
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
)
{
bool
out_value
=
param
->
out_value_
;
float
output_inverse_scale
=
1.
f
/
out_quant_arg
->
scale_
;
float
bias
=
-
in_quant_arg
->
zp_
*
in_quant_arg
->
scale_
;
int32_t
output_zp
=
out_quant_arg
->
zp_
;
int
in_shape1
=
in_shape
[
1
];
for
(
int
i
=
0
;
i
<
in_shape
[
0
];
++
i
)
{
size_t
in_dim0_offset
=
i
*
param
->
in_strides_
[
0
];
size_t
out_dim0_offset
=
i
*
param
->
out_strides_
[
0
];
for
(
int
j
=
0
;
j
<
param
->
in_strides_
[
1
];
++
j
)
{
for
(
int
k
=
0
;
k
<
in_shape1
;
++
k
)
{
size_t
offset
=
param
->
in_strides_
[
1
]
*
k
+
in_dim0_offset
+
j
;
param
->
arg_elements_
[
k
].
index_
=
k
;
param
->
arg_elements_
[
k
].
data_
.
f_data_
=
input
[
offset
]
*
in_quant_arg
->
scale_
+
bias
;
}
if
(
param
->
get_max_
)
{
qsort
(
param
->
arg_elements_
,
in_shape1
,
sizeof
(
ArgElement
),
ArgCompareDescInt8
);
}
else
{
qsort
(
param
->
arg_elements_
,
in_shape1
,
sizeof
(
ArgElement
),
ArgCompareAscInt8
);
}
for
(
int
k
=
0
;
k
<
param
->
topk_
;
++
k
)
{
size_t
out_offset
=
out_dim0_offset
+
j
+
k
*
param
->
out_strides_
[
1
];
float
real_out
=
out_value
?
param
->
arg_elements_
[
k
].
data_
.
f_data_
:
param
->
arg_elements_
[
k
].
index_
;
output
[
out_offset
]
=
GetInt8Output
(
real_out
,
output_inverse_scale
,
output_zp
);
}
}
}
}
void
ArgMinMaxDim2
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
)
{
bool
out_value
=
param
->
out_value_
;
float
output_inverse_scale
=
1.
f
/
out_quant_arg
->
scale_
;
float
bias
=
-
in_quant_arg
->
zp_
*
in_quant_arg
->
scale_
;
int32_t
output_zp
=
out_quant_arg
->
zp_
;
int
in_shape1
=
in_shape
[
1
];
int
in_shape2
=
in_shape
[
2
];
for
(
int
i
=
0
;
i
<
in_shape
[
0
];
++
i
)
{
size_t
in_dim0_offset
=
i
*
param
->
in_strides_
[
0
];
size_t
out_dim0_offset
=
i
*
param
->
out_strides_
[
0
];
for
(
int
j
=
0
;
j
<
in_shape1
;
++
j
)
{
size_t
in_dim1_offset
=
j
*
param
->
in_strides_
[
1
]
+
in_dim0_offset
;
size_t
out_dim1_offset
=
j
*
param
->
out_strides_
[
1
]
+
out_dim0_offset
;
for
(
int
k
=
0
;
k
<
param
->
in_strides_
[
2
];
++
k
)
{
for
(
int
l
=
0
;
l
<
in_shape2
;
++
l
)
{
size_t
offset
=
param
->
in_strides_
[
2
]
*
l
+
k
+
in_dim1_offset
;
param
->
arg_elements_
[
l
].
index_
=
l
;
param
->
arg_elements_
[
l
].
data_
.
f_data_
=
input
[
offset
]
*
in_quant_arg
->
scale_
+
bias
;
}
if
(
param
->
get_max_
)
{
qsort
(
param
->
arg_elements_
,
in_shape2
,
sizeof
(
ArgElement
),
ArgCompareDescInt8
);
}
else
{
qsort
(
param
->
arg_elements_
,
in_shape2
,
sizeof
(
ArgElement
),
ArgCompareAscInt8
);
}
for
(
int
l
=
0
;
l
<
param
->
topk_
;
++
l
)
{
size_t
out_offset
=
out_dim1_offset
+
k
+
l
*
param
->
out_strides_
[
2
];
float
real_out
=
out_value
?
param
->
arg_elements_
[
l
].
data_
.
f_data_
:
param
->
arg_elements_
[
l
].
index_
;
output
[
out_offset
]
=
GetInt8Output
(
real_out
,
output_inverse_scale
,
output_zp
);
}
}
}
}
}
void
ArgMinMaxDim3
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
)
{
bool
out_value
=
param
->
out_value_
;
float
output_inverse_scale
=
1.
f
/
out_quant_arg
->
scale_
;
float
bias
=
-
in_quant_arg
->
zp_
*
in_quant_arg
->
scale_
;
int32_t
output_zp
=
out_quant_arg
->
zp_
;
int
in_shape1
=
in_shape
[
1
];
int
in_shape2
=
in_shape
[
2
];
int
in_shape3
=
in_shape
[
3
];
for
(
int
i
=
0
;
i
<
in_shape
[
0
];
++
i
)
{
size_t
in_dim0_offset
=
i
*
param
->
in_strides_
[
0
];
size_t
out_dim0_offset
=
i
*
param
->
out_strides_
[
0
];
for
(
int
j
=
0
;
j
<
in_shape1
;
++
j
)
{
size_t
in_dim1_offset
=
j
*
param
->
in_strides_
[
1
]
+
in_dim0_offset
;
size_t
out_dim1_offset
=
j
*
param
->
out_strides_
[
1
]
+
out_dim0_offset
;
for
(
int
k
=
0
;
k
<
in_shape2
;
++
k
)
{
size_t
in_dim2_offset
=
k
*
param
->
in_strides_
[
2
]
+
in_dim1_offset
;
size_t
out_dim2_offset
=
k
*
param
->
out_strides_
[
2
]
+
out_dim1_offset
;
for
(
int
l
=
0
;
l
<
in_shape3
;
++
l
)
{
size_t
offset
=
l
+
in_dim2_offset
;
param
->
arg_elements_
[
l
].
index_
=
l
;
param
->
arg_elements_
[
l
].
data_
.
f_data_
=
input
[
offset
]
*
in_quant_arg
->
scale_
+
bias
;
}
if
(
param
->
get_max_
)
{
qsort
(
param
->
arg_elements_
,
in_shape3
,
sizeof
(
ArgElement
),
ArgCompareDescInt8
);
}
else
{
qsort
(
param
->
arg_elements_
,
in_shape3
,
sizeof
(
ArgElement
),
ArgCompareAscInt8
);
}
for
(
int
l
=
0
;
l
<
param
->
topk_
;
++
l
)
{
size_t
out_offset
=
out_dim2_offset
+
l
;
float
real_out
=
out_value
?
param
->
arg_elements_
[
l
].
data_
.
f_data_
:
param
->
arg_elements_
[
l
].
index_
;
output
[
out_offset
]
=
GetInt8Output
(
real_out
,
output_inverse_scale
,
output_zp
);
}
}
}
}
}
mindspore/lite/src/runtime/kernel/arm/opclib/int8/arg_min_max.h
→
mindspore/lite/src/runtime/kernel/arm/opclib/int8/arg_min_max
_int8
.h
浏览文件 @
00fa08ba
...
...
@@ -13,21 +13,20 @@
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARG_MIN_MAX_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARG_MIN_MAX_H_
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARG_MIN_MAX_
INT8_
H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARG_MIN_MAX_
INT8_
H_
#include "src/runtime/kernel/arm/opclib/arg_min_max_parameter.h"
#include "src/runtime/kernel/arm/opclib/quantization/quantize.h"
void
ArgMax
(
const
int8_t
*
input
,
int8_t
*
output
,
ArgMinMaxParameter
*
param
,
int
pre_axis_count
,
int
axis_count
,
int
after_axis_count
);
void
ArgMin
(
const
int8_t
*
input
,
int8_t
*
output
,
ArgMinMaxParameter
*
param
,
int
pre_axis_count
,
int
axis_count
,
int
after_axis_count
);
void
ArgMaxDim0
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
);
void
ArgMinDim0
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
);
void
ArgMaxDim1
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
);
void
ArgMinDim1
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
);
void
ArgMaxDim2
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
);
void
ArgMinDim2
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
);
void
ArgMaxDim3
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
);
void
ArgMinDim3
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARG_MIN_MAX_H_
void
ArgMinMaxQuant
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
,
QuantArg
*
in_quant
,
QuantArg
*
out_quant
);
void
ArgMinMaxDim0
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
,
QuantArg
*
in_quant
,
QuantArg
*
out_quant
);
void
ArgMinMaxDim1
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
,
QuantArg
*
in_quant
,
QuantArg
*
out_quant
);
void
ArgMinMaxDim2
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
,
QuantArg
*
in_quant
,
QuantArg
*
out_quant
);
void
ArgMinMaxDim3
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
ArgMinMaxParameter
*
param
,
QuantArg
*
in_quant
,
QuantArg
*
out_quant
);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARG_MIN_MAX_INT8_H_
mindspore/lite/src/runtime/kernel/arm/opclib/int8/arithmetic_int8.cc
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/opclib/int8/arithmetic_int8.h"
#ifdef ENABLE_NEON
#include <arm_neon.h>
#endif
#include "src/runtime/kernel/arm/opclib/errorcode.h"
int
ElementNotEqual
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
)
{
for
(
int
index
=
0
;
index
<
element_size
;
++
index
)
{
output
[
index
]
=
(
int8_t
)(
input0
[
index
]
!=
input1
[
index
]);
}
return
OPCLIB_OK
;
}
int
ElementEqual
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
)
{
for
(
int
index
=
0
;
index
<
element_size
;
++
index
)
{
output
[
index
]
=
(
int8_t
)(
input0
[
index
]
==
input1
[
index
]);
}
return
OPCLIB_OK
;
}
int
ElementLess
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
)
{
for
(
int
index
=
0
;
index
<
element_size
;
++
index
)
{
output
[
index
]
=
(
int8_t
)(
input0
[
index
]
<
input1
[
index
]);
}
return
OPCLIB_OK
;
}
int
ElementLessEqual
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
)
{
for
(
int
index
=
0
;
index
<
element_size
;
++
index
)
{
output
[
index
]
=
(
int8_t
)(
input0
[
index
]
<=
input1
[
index
]);
}
return
OPCLIB_OK
;
}
int
ElementGreater
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
)
{
for
(
int
index
=
0
;
index
<
element_size
;
++
index
)
{
output
[
index
]
=
(
int8_t
)(
input0
[
index
]
>
input1
[
index
]);
}
return
OPCLIB_OK
;
}
int
ElementGreaterEqual
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
)
{
for
(
int
index
=
0
;
index
<
element_size
;
++
index
)
{
output
[
index
]
=
(
int8_t
)(
input0
[
index
]
>=
input1
[
index
]);
}
return
OPCLIB_OK
;
}
mindspore/lite/src/runtime/kernel/arm/opclib/int8/arithmetic_int8.h
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARITHMETIC_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARITHMETIC_INT8_H_
#include "src/runtime/kernel/arm/opclib/op_base.h"
int
ElementNotEqual
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
);
int
ElementEqual
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
);
int
ElementLess
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
);
int
ElementLessEqual
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
);
int
ElementGreater
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
);
int
ElementGreaterEqual
(
int8_t
*
input0
,
int8_t
*
input1
,
int8_t
*
output
,
int
element_size
);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_ARITHMETIC_INT8_H_
mindspore/lite/src/runtime/kernel/arm/opclib/int8/batch_to_space_int8.cc
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/opclib/int8/batch_to_space_int8.h"
#include "src/runtime/kernel/arm/opclib/arithmetic_common.h"
void
BatchToSpaceNoCropForNHWC
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
int
out_n
,
const
int
*
block
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
)
{
int
block_h
=
block
[
0
];
int
block_w
=
block
[
1
];
int
in_h
=
in_shape
[
1
];
int
in_w
=
in_shape
[
2
];
int
in_c
=
in_shape
[
3
];
size_t
stride_h
=
block_w
*
out_n
;
size_t
output_offset
=
0
;
size_t
in_stride_h
=
in_w
*
in_c
;
size_t
in_stride_n
=
in_stride_h
*
in_h
;
float
output_inverse_scale
=
1.
f
/
out_quant_arg
->
scale_
;
float
scale
=
in_quant_arg
->
scale_
*
output_inverse_scale
;
float
bias
=
-
in_quant_arg
->
zp_
*
scale
;
int32_t
output_zp
=
out_quant_arg
->
zp_
;
for
(
int
n
=
0
;
n
<
out_n
;
++
n
)
{
for
(
int
h
=
0
;
h
<
in_h
;
++
h
)
{
size_t
h_offset
=
h
*
in_stride_h
;
for
(
int
bh
=
0
;
bh
<
block_h
;
++
bh
)
{
for
(
int
w
=
0
;
w
<
in_w
;
++
w
)
{
size_t
w_offset
=
w
*
in_c
;
for
(
int
bw
=
0
;
bw
<
block_w
;
++
bw
)
{
size_t
in_offset
=
in_stride_n
*
(
bh
*
stride_h
+
bw
*
out_n
+
n
)
+
w_offset
+
h_offset
;
for
(
int
c
=
0
;
c
<
in_c
;
++
c
)
{
int32_t
output_tmp
=
round
(
input
[
in_offset
+
c
]
*
scale
+
bias
)
+
output_zp
;
output_tmp
=
output_tmp
>
127
?
127
:
output_tmp
;
output_tmp
=
output_tmp
<
-
128
?
-
128
:
output_tmp
;
output
[
output_offset
++
]
=
output_tmp
;
}
}
}
}
}
}
}
void
BatchToSpaceForNHWC
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
int
out_n
,
const
int
*
block
,
const
int
*
crops
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
)
{
int
block_h
=
block
[
0
];
int
block_w
=
block
[
1
];
int
in_n
=
in_shape
[
0
];
int
in_h
=
in_shape
[
1
];
int
in_w
=
in_shape
[
2
];
int
in_c
=
in_shape
[
3
];
int
h_start
=
crops
[
0
]
/
block_h
;
int
h_valid_begin
=
crops
[
0
];
int
h_end
=
MSMIN
((
in_h
*
block_h
-
crops
[
1
])
/
block_h
+
1
,
in_h
);
int
h_valid_end
=
in_h
*
block_h
-
crops
[
1
]
-
1
;
int
w_start
=
crops
[
2
]
/
block_w
;
int
w_valid_begin
=
crops
[
2
];
int
w_end
=
MSMIN
((
in_w
*
block_w
-
crops
[
3
])
/
block_w
+
1
,
in_w
);
int
w_valid_end
=
in_w
*
block_w
-
crops
[
3
]
-
1
;
size_t
stride_h
=
block_w
*
out_n
;
size_t
output_offset
=
0
;
size_t
in_stride_h
=
in_w
*
in_c
;
size_t
in_stride_n
=
in_stride_h
*
in_h
;
float
output_inverse_scale
=
1.
f
/
out_quant_arg
->
scale_
;
float
scale
=
in_quant_arg
->
scale_
*
output_inverse_scale
;
float
bias
=
-
in_quant_arg
->
zp_
*
scale
;
int32_t
output_zp
=
out_quant_arg
->
zp_
;
for
(
int
n
=
0
;
n
<
out_n
;
++
n
)
{
for
(
int
h
=
h_start
;
h
<
h_end
;
++
h
)
{
size_t
h_offset
=
h
*
in_stride_h
;
for
(
int
bh
=
0
;
bh
<
block_h
;
++
bh
)
{
size_t
h_index
=
h
*
block_h
+
bh
;
if
(
h_index
<
h_valid_begin
||
h_index
>
h_valid_end
)
{
continue
;
}
for
(
int
w
=
w_start
;
w
<
w_end
;
++
w
)
{
size_t
w_offset
=
w
*
in_c
;
for
(
int
bw
=
0
;
bw
<
block_w
;
++
bw
)
{
size_t
w_index
=
w
*
block_w
+
bw
;
if
(
w_index
<
w_valid_begin
||
w_index
>
w_valid_end
)
{
continue
;
}
size_t
in_offset
=
in_stride_n
*
(
bh
*
stride_h
+
bw
*
out_n
+
n
)
+
w_offset
+
h_offset
;
for
(
int
c
=
0
;
c
<
in_c
;
++
c
)
{
int32_t
output_tmp
=
round
(
input
[
in_offset
+
c
]
*
scale
+
bias
)
+
output_zp
;
output_tmp
=
output_tmp
>
127
?
127
:
output_tmp
;
output_tmp
=
output_tmp
<
-
128
?
-
128
:
output_tmp
;
output
[
output_offset
++
]
=
output_tmp
;
}
}
}
}
}
}
}
mindspore/lite/src/runtime/kernel/arm/opclib/int8/batch_to_space_int8.h
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_BATCH_TO_SPACE_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_BATCH_TO_SPACE_INT8_H_
#include "src/runtime/kernel/arm/opclib/op_base.h"
#include "src/runtime/kernel/arm/opclib/quantization/quantize.h"
void
BatchToSpaceNoCropForNHWC
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
int
out_n
,
const
int
*
block
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
);
void
BatchToSpaceForNHWC
(
const
int8_t
*
input
,
int8_t
*
output
,
const
int
*
in_shape
,
int
out_n
,
const
int
*
block
,
const
int
*
crops
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_BATCH_TO_SPACE_INT8_H_
mindspore/lite/src/runtime/kernel/arm/opclib/int8/depth_to_space_int8.cc
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "src/runtime/kernel/arm/opclib/int8/depth_to_space_int8.h"
#include <string.h>
void
DepthToSpaceForNHWC
(
const
int8_t
*
input
,
int8_t
*
output
,
int
*
in_shape
,
DepthToSpaceParameter
*
param
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
)
{
int32_t
block_size
=
param
->
block_size_
;
int32_t
in_shape_dim2
=
in_shape
[
2
];
int32_t
in_shape_dim1
=
in_shape
[
1
];
size_t
copy_size
=
block_size
*
param
->
out_stride_dim2_
;
float
output_inverse_scale
=
1.
f
/
out_quant_arg
->
scale_
;
float
scale
=
in_quant_arg
->
scale_
*
output_inverse_scale
;
float
bias
=
-
in_quant_arg
->
zp_
*
scale
;
int32_t
output_zp
=
out_quant_arg
->
zp_
;
for
(
int
i
=
0
;
i
<
in_shape
[
0
];
++
i
)
{
size_t
in_offset_n
=
i
*
param
->
in_stride_dim0_
;
size_t
out_offset_n
=
i
*
param
->
out_stride_dim0_
;
for
(
int
j
=
0
;
j
<
in_shape_dim1
;
++
j
)
{
size_t
in_offset_h
=
in_offset_n
+
j
*
param
->
in_stride_dim1_
;
size_t
out_offset_h
=
out_offset_n
+
j
*
block_size
*
param
->
out_stride_dim1_
;
for
(
int
k
=
0
;
k
<
in_shape_dim2
;
++
k
)
{
size_t
in_offset_w
=
in_offset_h
+
k
*
param
->
in_stride_dim2_
;
size_t
out_offset_w
=
out_offset_h
+
k
*
block_size
*
param
->
out_stride_dim2_
;
for
(
int
l
=
0
;
l
<
block_size
;
++
l
)
{
size_t
out_offset
=
out_offset_w
+
l
*
param
->
out_stride_dim1_
;
size_t
in_offset
=
in_offset_w
+
l
*
block_size
*
param
->
out_stride_dim2_
;
for
(
int
m
=
0
;
m
<
copy_size
;
++
m
)
{
int32_t
output_tmp
=
round
(
input
[
in_offset
+
m
]
*
scale
+
bias
)
+
output_zp
;
output_tmp
=
output_tmp
>
127
?
127
:
output_tmp
;
output_tmp
=
output_tmp
<
-
128
?
-
128
:
output_tmp
;
output
[
out_offset
+
m
]
=
output_tmp
;
}
}
}
}
}
}
mindspore/lite/src/runtime/kernel/arm/opclib/int8/depth_to_space_int8.h
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_DEPTH_TO_SPACE_INT8_H_
#define MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_DEPTH_TO_SPACE_INT8_H_
#include "src/runtime/kernel/arm/opclib/depth_to_space_parameter.h"
#include "src/runtime/kernel/arm/opclib/quantization/quantize.h"
void
DepthToSpaceForNHWC
(
const
int8_t
*
input
,
int8_t
*
output
,
int
*
in_shape
,
DepthToSpaceParameter
*
param
,
QuantArg
*
in_quant_arg
,
QuantArg
*
out_quant_arg
);
#endif // MINDSPORE_LITE_SRC_RUNTIME_KERNEL_ARM_OPCLIB_INT8_DEPTH_TO_SPACE_INT8_H_
mindspore/lite/test/ut/src/runtime/kernel/arm/fp32/argminmax_fp32_test.cc
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mindspore/core/utils/log_adapter.h"
#include "common/common_test.h"
#include "mindspore/lite/src/runtime/kernel/arm/opclib/fp32/arg_min_max.h"
#include "mindspore/lite/src/runtime/kernel/arm/opclib/arg_min_max.h"
#include "mindspore/lite/src/runtime/kernel/arm/opclib/arithmetic_common.h"
namespace
mindspore
{
class
TestArgMinMaxTestFp32
:
public
mindspore
::
Common
{
public:
TestArgMinMaxTestFp32
()
=
default
;
};
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMaxTest1
)
{
std
::
vector
<
float
>
in
=
{
10
,
20
,
30
,
40
,
90
,
20
,
11
,
15
,
1
,
50
,
30
,
45
,
25
,
50
,
30
};
std
::
vector
<
float
>
except_out
=
{
2
,
2
,
0
,
2
,
0
};
std
::
vector
<
int
>
shape
=
{
3
,
5
};
float
out
[
5
];
ArgMinMaxParameter
param
;
param
.
topk_
=
1
;
param
.
out_value_
=
false
;
param
.
axis_
=
0
;
param
.
data_type_
=
43
;
param
.
dims_size_
=
2
;
param
.
get_max_
=
true
;
ArgMinMax
(
in
.
data
(),
out
,
shape
.
data
(),
&
param
);
for
(
size_t
i
=
0
;
i
<
except_out
.
size
();
++
i
)
{
std
::
cout
<<
out
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.000001
);
}
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMaxTest2
)
{
std
::
vector
<
float
>
in
=
{
10
,
20
,
30
,
40
,
90
,
20
,
11
,
15
,
1
,
50
,
30
,
45
,
25
,
50
,
30
};
std
::
vector
<
float
>
except_out
=
{
30
,
45
,
30
,
50
,
90
};
std
::
vector
<
int
>
shape
=
{
3
,
5
};
float
out
[
5
];
ArgMinMaxParameter
param
;
param
.
topk_
=
1
;
param
.
out_value_
=
true
;
param
.
axis_
=
0
;
param
.
data_type_
=
43
;
param
.
dims_size_
=
2
;
param
.
get_max_
=
true
;
ArgMinMax
(
in
.
data
(),
out
,
shape
.
data
(),
&
param
);
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.000001
);
}
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMinTest2
)
{
std
::
vector
<
float
>
in
=
{
10
,
20
,
30
,
40
,
90
,
20
,
11
,
15
,
1
,
50
,
30
,
45
,
25
,
50
,
30
};
std
::
vector
<
float
>
except_out
=
{
10
,
11
,
15
,
1
,
30
};
std
::
vector
<
int
>
shape
=
{
3
,
5
};
float
out
[
5
];
ArgMinMaxParameter
param
;
param
.
topk_
=
1
;
param
.
out_value_
=
true
;
param
.
axis_
=
0
;
param
.
data_type_
=
43
;
param
.
dims_size_
=
2
;
param
.
get_max_
=
false
;
ArgMinMax
(
in
.
data
(),
out
,
shape
.
data
(),
&
param
);
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.000001
);
}
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMaxTest3_axis2_out_data
)
{
std
::
vector
<
float
>
in
=
{
10
,
20
,
30
,
40
,
90
,
20
,
11
,
15
,
1
,
50
,
30
,
45
,
25
,
50
,
30
};
std
::
vector
<
float
>
except_out
=
{
30
,
45
,
30
,
50
,
90
,
20
,
20
,
25
,
40
,
50
};
ArgMinMaxParameter
param
;
param
.
axis_
=
2
;
std
::
vector
<
int
>
in_shape
=
{
1
,
1
,
3
,
5
};
param
.
arg_elements_
=
reinterpret_cast
<
ArgElement
*>
(
malloc
(
in_shape
[
param
.
axis_
]
*
sizeof
(
ArgElement
)));
param
.
out_value_
=
true
;
param
.
topk_
=
2
;
std
::
vector
<
int
>
out_shape
=
{
1
,
1
,
2
,
5
};
ComputeStrides
(
in_shape
.
data
(),
param
.
in_strides_
,
in_shape
.
size
());
ComputeStrides
(
out_shape
.
data
(),
param
.
out_strides_
,
out_shape
.
size
());
float
out
[
10
];
ArgMaxDim2
(
in
.
data
(),
out
,
in_shape
.
data
(),
&
param
);
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.00001
);
}
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMaxTest3_axis2_out_index
)
{
std
::
vector
<
float
>
in
=
{
10
,
20
,
30
,
40
,
90
,
20
,
11
,
15
,
1
,
50
,
30
,
45
,
25
,
50
,
30
};
std
::
vector
<
float
>
except_out
=
{
2
,
2
,
0
,
2
,
0
,
1
,
0
,
2
,
0
,
1
};
ArgMinMaxParameter
param
;
param
.
axis_
=
2
;
std
::
vector
<
int
>
in_shape
=
{
1
,
1
,
3
,
5
};
param
.
arg_elements_
=
reinterpret_cast
<
ArgElement
*>
(
malloc
(
in_shape
[
param
.
axis_
]
*
sizeof
(
ArgElement
)));
param
.
out_value_
=
false
;
param
.
topk_
=
2
;
std
::
vector
<
int
>
out_shape
=
{
1
,
1
,
2
,
5
};
ComputeStrides
(
in_shape
.
data
(),
param
.
in_strides_
,
in_shape
.
size
());
ComputeStrides
(
out_shape
.
data
(),
param
.
out_strides_
,
out_shape
.
size
());
float
out
[
10
];
ArgMaxDim2
(
in
.
data
(),
out
,
in_shape
.
data
(),
&
param
);
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.00001
);
}
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMaxTest4_axis3_out_data
)
{
std
::
vector
<
float
>
in
=
{
10
,
20
,
30
,
40
,
90
,
20
,
11
,
15
,
1
,
50
,
30
,
45
,
25
,
50
,
30
};
std
::
vector
<
float
>
except_out
=
{
90
,
40
,
50
,
20
,
50
,
45
};
ArgMinMaxParameter
param
;
param
.
axis_
=
3
;
std
::
vector
<
int
>
in_shape
=
{
1
,
1
,
3
,
5
};
param
.
arg_elements_
=
reinterpret_cast
<
ArgElement
*>
(
malloc
(
in_shape
[
param
.
axis_
]
*
sizeof
(
ArgElement
)));
param
.
out_value_
=
true
;
param
.
topk_
=
2
;
std
::
vector
<
int
>
out_shape
=
{
1
,
1
,
3
,
2
};
ComputeStrides
(
in_shape
.
data
(),
param
.
in_strides_
,
in_shape
.
size
());
ComputeStrides
(
out_shape
.
data
(),
param
.
out_strides_
,
out_shape
.
size
());
float
out
[
6
];
ArgMaxDim3
(
in
.
data
(),
out
,
in_shape
.
data
(),
&
param
);
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.00001
);
}
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMaxTest4_axis3_out_index
)
{
std
::
vector
<
float
>
in
=
{
10
,
20
,
30
,
40
,
90
,
20
,
11
,
15
,
1
,
50
,
30
,
45
,
25
,
50
,
30
};
std
::
vector
<
float
>
except_out
=
{
4
,
3
,
4
,
0
,
3
,
1
};
ArgMinMaxParameter
param
;
param
.
axis_
=
3
;
std
::
vector
<
int
>
in_shape
=
{
1
,
1
,
3
,
5
};
param
.
arg_elements_
=
reinterpret_cast
<
ArgElement
*>
(
malloc
(
in_shape
[
param
.
axis_
]
*
sizeof
(
ArgElement
)));
param
.
out_value_
=
false
;
param
.
topk_
=
2
;
std
::
vector
<
int
>
out_shape
=
{
1
,
1
,
3
,
2
};
ComputeStrides
(
in_shape
.
data
(),
param
.
in_strides_
,
in_shape
.
size
());
ComputeStrides
(
out_shape
.
data
(),
param
.
out_strides_
,
out_shape
.
size
());
float
out
[
6
];
ArgMaxDim3
(
in
.
data
(),
out
,
in_shape
.
data
(),
&
param
);
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.00001
);
}
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMaxTest5_axis1_out_index
)
{
std
::
vector
<
float
>
in
=
{
100
,
2
,
300
,
4
,
50
,
6
,
11
,
12
,
13
,
34
,
35
,
36
,
9
,
6
,
17
,
10
,
20
,
30
,
10
,
20
,
30
,
40
,
5
,
60
,
7
,
80
,
90
,
10
,
11
,
120
,
18
,
5
,
16
,
9
,
22
,
23
};
std
::
vector
<
float
>
except_out
=
{
0
,
1
,
0
,
1
,
0
,
1
,
1
,
2
,
2
,
2
,
1
,
2
,
2
,
1
,
1
,
0
,
2
,
1
,
0
,
0
,
0
,
1
,
1
,
0
};
ArgMinMaxParameter
param
;
param
.
axis_
=
1
;
std
::
vector
<
int
>
in_shape
=
{
2
,
3
,
2
,
3
};
param
.
arg_elements_
=
reinterpret_cast
<
ArgElement
*>
(
malloc
(
in_shape
[
param
.
axis_
]
*
sizeof
(
ArgElement
)));
param
.
out_value_
=
false
;
param
.
topk_
=
2
;
std
::
vector
<
int
>
out_shape
=
{
2
,
2
,
2
,
3
};
ComputeStrides
(
in_shape
.
data
(),
param
.
in_strides_
,
in_shape
.
size
());
ComputeStrides
(
out_shape
.
data
(),
param
.
out_strides_
,
out_shape
.
size
());
float
out
[
24
];
ArgMaxDim1
(
in
.
data
(),
out
,
in_shape
.
data
(),
&
param
);
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.00001
);
}
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMaxTest5_axis1_out_data
)
{
std
::
vector
<
float
>
in
=
{
100
,
2
,
300
,
4
,
50
,
6
,
11
,
12
,
13
,
34
,
35
,
36
,
9
,
6
,
17
,
10
,
20
,
30
,
10
,
20
,
30
,
40
,
5
,
60
,
7
,
80
,
90
,
10
,
11
,
120
,
18
,
5
,
16
,
9
,
22
,
23
};
std
::
vector
<
float
>
except_out
=
{
100
,
12
,
300
,
34
,
50
,
36
,
11
,
6
,
17
,
10
,
35
,
30
,
18
,
80
,
90
,
40
,
22
,
120
,
10
,
20
,
30
,
10
,
11
,
60
};
ArgMinMaxParameter
param
;
param
.
axis_
=
1
;
std
::
vector
<
int
>
in_shape
=
{
2
,
3
,
2
,
3
};
param
.
arg_elements_
=
reinterpret_cast
<
ArgElement
*>
(
malloc
(
in_shape
[
param
.
axis_
]
*
sizeof
(
ArgElement
)));
param
.
out_value_
=
true
;
param
.
topk_
=
2
;
std
::
vector
<
int
>
out_shape
=
{
2
,
2
,
2
,
3
};
ComputeStrides
(
in_shape
.
data
(),
param
.
in_strides_
,
in_shape
.
size
());
ComputeStrides
(
out_shape
.
data
(),
param
.
out_strides_
,
out_shape
.
size
());
float
out
[
24
];
ArgMaxDim1
(
in
.
data
(),
out
,
in_shape
.
data
(),
&
param
);
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.00001
);
}
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMaxTest6_axis0_out_index
)
{
std
::
vector
<
float
>
in
=
{
100
,
2
,
4
,
50
,
11
,
12
,
34
,
35
,
10
,
20
,
40
,
5
,
7
,
80
,
10
,
11
,
55
,
25
,
5
,
15
,
18
,
8
,
15
,
16
};
std
::
vector
<
float
>
except_out
=
{
0
,
2
,
1
,
0
,
2
,
1
,
0
,
0
,
2
,
1
,
2
,
2
,
0
,
0
,
2
,
2
};
ArgMinMaxParameter
param
;
param
.
axis_
=
1
;
std
::
vector
<
int
>
in_shape
=
{
3
,
2
,
2
,
2
};
param
.
arg_elements_
=
reinterpret_cast
<
ArgElement
*>
(
malloc
(
in_shape
[
param
.
axis_
]
*
sizeof
(
ArgElement
)));
param
.
out_value_
=
false
;
param
.
topk_
=
2
;
std
::
vector
<
int
>
out_shape
=
{
2
,
2
,
2
,
2
};
ComputeStrides
(
in_shape
.
data
(),
param
.
in_strides_
,
in_shape
.
size
());
ComputeStrides
(
out_shape
.
data
(),
param
.
out_strides_
,
out_shape
.
size
());
float
out
[
16
];
ArgMaxDim0
(
in
.
data
(),
out
,
in_shape
.
data
(),
&
param
);
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.00001
);
}
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMaxTest6_axis0_out_data
)
{
std
::
vector
<
float
>
in
=
{
100
,
2
,
4
,
50
,
11
,
12
,
34
,
35
,
10
,
20
,
40
,
5
,
7
,
80
,
10
,
11
,
55
,
25
,
5
,
15
,
18
,
8
,
15
,
16
};
std
::
vector
<
float
>
except_out
=
{
100
,
25
,
40
,
50
,
18
,
80
,
34
,
35
,
55
,
20
,
5
,
15
,
11
,
12
,
15
,
16
};
ArgMinMaxParameter
param
;
param
.
axis_
=
1
;
std
::
vector
<
int
>
in_shape
=
{
3
,
2
,
2
,
2
};
param
.
arg_elements_
=
reinterpret_cast
<
ArgElement
*>
(
malloc
(
in_shape
[
param
.
axis_
]
*
sizeof
(
ArgElement
)));
param
.
out_value_
=
true
;
param
.
topk_
=
2
;
std
::
vector
<
int
>
out_shape
=
{
2
,
2
,
2
,
2
};
ComputeStrides
(
in_shape
.
data
(),
param
.
in_strides_
,
in_shape
.
size
());
ComputeStrides
(
out_shape
.
data
(),
param
.
out_strides_
,
out_shape
.
size
());
float
out
[
16
];
ArgMaxDim0
(
in
.
data
(),
out
,
in_shape
.
data
(),
&
param
);
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.00001
);
}
TEST_F
(
TestArgMinMaxTestFp32
,
ArgMinTest1_axis3_out_data
)
{
std
::
vector
<
float
>
in
=
{
10
,
20
,
30
,
40
,
90
,
20
,
11
,
15
,
1
,
50
,
30
,
45
,
25
,
50
,
30
};
std
::
vector
<
float
>
except_out
=
{
10
,
20
,
1
,
11
,
25
,
30
};
ArgMinMaxParameter
param
;
param
.
axis_
=
3
;
std
::
vector
<
int
>
in_shape
=
{
1
,
1
,
3
,
5
};
param
.
arg_elements_
=
reinterpret_cast
<
ArgElement
*>
(
malloc
(
in_shape
[
param
.
axis_
]
*
sizeof
(
ArgElement
)));
param
.
out_value_
=
true
;
param
.
topk_
=
2
;
std
::
vector
<
int
>
out_shape
=
{
1
,
1
,
3
,
2
};
ComputeStrides
(
in_shape
.
data
(),
param
.
in_strides_
,
in_shape
.
size
());
ComputeStrides
(
out_shape
.
data
(),
param
.
out_strides_
,
out_shape
.
size
());
float
out
[
6
];
ArgMinDim3
(
in
.
data
(),
out
,
in_shape
.
data
(),
&
param
);
CompareOutputData
(
out
,
except_out
.
data
(),
except_out
.
size
(),
0.00001
);
}
}
// namespace mindspore
mindspore/lite/test/ut/src/runtime/kernel/arm/fp32/batch_to_space_fp32_test.cc
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mindspore/core/utils/log_adapter.h"
#include "common/common_test.h"
#include "mindspore/lite/src/runtime/kernel/arm/opclib/batch_to_space.h"
#include "mindspore/lite/src/runtime/kernel/arm/opclib/arithmetic_common.h"
namespace
mindspore
{
class
BatchToSpaceTestFp32
:
public
mindspore
::
Common
{
public:
BatchToSpaceTestFp32
()
=
default
;
};
TEST_F
(
BatchToSpaceTestFp32
,
BatchToSpaceTest1
)
{
float
input
[
12
]
=
{
10
,
30
,
90
,
2
,
20
,
120
,
5
,
50
,
150
,
6
,
16
,
160
};
constexpr
int
kOutSize
=
12
;
float
expect_out
[
kOutSize
]
=
{
10
,
30
,
90
,
2
,
20
,
120
,
5
,
50
,
150
,
6
,
16
,
160
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
4
,
1
,
1
,
3
};
int
out_n
=
1
;
int
block
[
2
]
=
{
2
,
2
};
BatchToSpaceNoCropForNHWC
(
input
,
output
,
in_shape
,
out_n
,
block
,
sizeof
(
float
));
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
BatchToSpaceTestFp32
,
BatchToSpaceTest_crop_1
)
{
float
input
[
12
]
=
{
10
,
30
,
90
,
2
,
20
,
120
,
5
,
50
,
150
,
6
,
16
,
160
};
constexpr
int
kOutSize
=
3
;
float
expect_out
[
kOutSize
]
=
{
5
,
50
,
150
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
4
,
1
,
1
,
3
};
int
out_n
=
1
;
int
block
[
2
]
=
{
2
,
2
};
int
crops
[
4
]
=
{
1
,
0
,
0
,
1
};
BatchToSpaceForNHWC
(
input
,
output
,
in_shape
,
out_n
,
block
,
crops
,
sizeof
(
float
));
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
BatchToSpaceTestFp32
,
BatchToSpaceTest2
)
{
float
input
[
32
]
=
{
1
,
10
,
3
,
30
,
9
,
90
,
11
,
110
,
2
,
20
,
4
,
40
,
10
,
100
,
12
,
120
,
5
,
50
,
7
,
70
,
13
,
130
,
15
,
150
,
6
,
60
,
8
,
80
,
14
,
140
,
16
,
160
};
constexpr
int
kOutSize
=
32
;
float
expect_out
[
kOutSize
]
=
{
1
,
10
,
2
,
20
,
3
,
30
,
4
,
40
,
5
,
50
,
6
,
60
,
7
,
70
,
8
,
80
,
9
,
90
,
10
,
100
,
11
,
110
,
12
,
120
,
13
,
130
,
14
,
140
,
15
,
150
,
16
,
160
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
4
,
2
,
2
,
2
};
int
out_n
=
1
;
int
block
[
2
]
=
{
2
,
2
};
BatchToSpaceNoCropForNHWC
(
input
,
output
,
in_shape
,
out_n
,
block
,
sizeof
(
float
));
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
BatchToSpaceTestFp32
,
BatchToSpaceTest_crop_2
)
{
float
input
[
32
]
=
{
1
,
10
,
3
,
30
,
9
,
90
,
11
,
110
,
2
,
20
,
4
,
40
,
10
,
100
,
12
,
120
,
5
,
50
,
7
,
70
,
13
,
130
,
15
,
150
,
6
,
60
,
8
,
80
,
14
,
140
,
16
,
160
};
constexpr
int
kOutSize
=
12
;
float
expect_out
[
kOutSize
]
=
{
6
,
60
,
7
,
70
,
8
,
80
,
10
,
100
,
11
,
110
,
12
,
120
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
4
,
2
,
2
,
2
};
int
out_n
=
1
;
int
block
[
2
]
=
{
2
,
2
};
int
crops
[
4
]
=
{
1
,
1
,
1
,
0
};
BatchToSpaceForNHWC
(
input
,
output
,
in_shape
,
out_n
,
block
,
crops
,
sizeof
(
float
));
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
BatchToSpaceTestFp32
,
BatchToSpaceTest3
)
{
float
input
[
64
]
=
{
1
,
10
,
3
,
30
,
9
,
90
,
11
,
110
,
2
,
20
,
4
,
40
,
10
,
100
,
12
,
120
,
5
,
50
,
7
,
70
,
13
,
130
,
15
,
150
,
6
,
60
,
8
,
80
,
14
,
140
,
16
,
160
,
21
,
10
,
23
,
30
,
29
,
90
,
211
,
110
,
22
,
20
,
24
,
40
,
210
,
100
,
212
,
120
,
25
,
50
,
27
,
70
,
213
,
130
,
215
,
150
,
26
,
60
,
28
,
80
,
214
,
140
,
216
,
160
};
constexpr
int
kOutSize
=
64
;
float
expect_out
[
kOutSize
]
=
{
1
,
10
,
5
,
50
,
3
,
30
,
7
,
70
,
21
,
10
,
25
,
50
,
23
,
30
,
27
,
70
,
9
,
90
,
13
,
130
,
11
,
110
,
15
,
150
,
29
,
90
,
213
,
130
,
211
,
110
,
215
,
150
,
2
,
20
,
6
,
60
,
4
,
40
,
8
,
80
,
22
,
20
,
26
,
60
,
24
,
40
,
28
,
80
,
10
,
100
,
14
,
140
,
12
,
120
,
16
,
160
,
210
,
100
,
214
,
140
,
212
,
120
,
216
,
160
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
8
,
2
,
2
,
2
};
int
out_n
=
2
;
int
block
[
2
]
=
{
2
,
2
};
BatchToSpaceNoCropForNHWC
(
input
,
output
,
in_shape
,
out_n
,
block
,
sizeof
(
float
));
for
(
int
i
=
0
;
i
<
kOutSize
&&
i
<
32
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
BatchToSpaceTestFp32
,
BatchToSpaceTest_crop_3
)
{
float
input
[
64
]
=
{
1
,
10
,
3
,
30
,
9
,
90
,
11
,
110
,
2
,
20
,
4
,
40
,
10
,
100
,
12
,
120
,
5
,
50
,
7
,
70
,
13
,
130
,
15
,
150
,
6
,
60
,
8
,
80
,
14
,
140
,
16
,
160
,
21
,
10
,
23
,
30
,
29
,
90
,
211
,
110
,
22
,
20
,
24
,
40
,
210
,
100
,
212
,
120
,
25
,
50
,
27
,
70
,
213
,
130
,
215
,
150
,
26
,
60
,
28
,
80
,
214
,
140
,
216
,
160
};
constexpr
int
kOutSize
=
16
;
float
expect_out
[
kOutSize
]
=
{
9
,
90
,
13
,
130
,
29
,
90
,
213
,
130
,
10
,
100
,
14
,
140
,
210
,
100
,
214
,
140
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
8
,
2
,
2
,
2
};
int
out_n
=
2
;
int
block
[
2
]
=
{
2
,
2
};
int
crops
[
4
]
=
{
2
,
0
,
0
,
2
};
BatchToSpaceForNHWC
(
input
,
output
,
in_shape
,
out_n
,
block
,
crops
,
sizeof
(
float
));
for
(
int
i
=
0
;
i
<
kOutSize
&&
i
<
32
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
BatchToSpaceTestFp32
,
BatchToSpaceTest4
)
{
float
input
[
96
]
=
{
1
,
10
,
3
,
30
,
9
,
90
,
11
,
110
,
2
,
20
,
4
,
40
,
10
,
100
,
12
,
120
,
5
,
50
,
7
,
70
,
13
,
130
,
15
,
150
,
6
,
60
,
8
,
80
,
14
,
140
,
16
,
160
,
21
,
10
,
23
,
30
,
29
,
90
,
211
,
110
,
22
,
20
,
24
,
40
,
210
,
100
,
212
,
120
,
25
,
50
,
27
,
70
,
213
,
130
,
215
,
150
,
26
,
60
,
28
,
80
,
214
,
140
,
216
,
160
,
31
,
10
,
33
,
30
,
39
,
90
,
311
,
110
,
32
,
20
,
34
,
40
,
310
,
100
,
312
,
120
,
35
,
50
,
37
,
70
,
313
,
130
,
315
,
150
,
36
,
60
,
38
,
80
,
314
,
140
,
316
,
160
};
constexpr
int
kOutSize
=
96
;
float
expect_out
[
kOutSize
]
=
{
1
,
10
,
5
,
50
,
3
,
30
,
7
,
70
,
21
,
10
,
25
,
50
,
23
,
30
,
27
,
70
,
31
,
10
,
35
,
50
,
33
,
30
,
37
,
70
,
9
,
90
,
13
,
130
,
11
,
110
,
15
,
150
,
29
,
90
,
213
,
130
,
211
,
110
,
215
,
150
,
39
,
90
,
313
,
130
,
311
,
110
,
315
,
150
,
2
,
20
,
6
,
60
,
4
,
40
,
8
,
80
,
22
,
20
,
26
,
60
,
24
,
40
,
28
,
80
,
32
,
20
,
36
,
60
,
34
,
40
,
38
,
80
,
10
,
100
,
14
,
140
,
12
,
120
,
16
,
160
,
210
,
100
,
214
,
140
,
212
,
120
,
216
,
160
,
310
,
100
,
314
,
140
,
312
,
120
,
316
,
160
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
12
,
2
,
2
,
2
};
int
out_n
=
2
;
int
block
[
2
]
=
{
3
,
2
};
BatchToSpaceNoCropForNHWC
(
input
,
output
,
in_shape
,
out_n
,
block
,
sizeof
(
float
));
for
(
int
i
=
0
;
i
<
kOutSize
&&
i
<
32
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
BatchToSpaceTestFp32
,
BatchToSpaceTest_crop_4
)
{
float
input
[
96
]
=
{
1
,
10
,
3
,
30
,
9
,
90
,
11
,
110
,
2
,
20
,
4
,
40
,
10
,
100
,
12
,
120
,
5
,
50
,
7
,
70
,
13
,
130
,
15
,
150
,
6
,
60
,
8
,
80
,
14
,
140
,
16
,
160
,
21
,
10
,
23
,
30
,
29
,
90
,
211
,
110
,
22
,
20
,
24
,
40
,
210
,
100
,
212
,
120
,
25
,
50
,
27
,
70
,
213
,
130
,
215
,
150
,
26
,
60
,
28
,
80
,
214
,
140
,
216
,
160
,
31
,
10
,
33
,
30
,
39
,
90
,
311
,
110
,
32
,
20
,
34
,
40
,
310
,
100
,
312
,
120
,
35
,
50
,
37
,
70
,
313
,
130
,
315
,
150
,
36
,
60
,
38
,
80
,
314
,
140
,
316
,
160
};
constexpr
int
kOutSize
=
24
;
float
expect_out
[
kOutSize
]
=
{
25
,
50
,
23
,
30
,
35
,
50
,
33
,
30
,
13
,
130
,
11
,
110
,
26
,
60
,
24
,
40
,
36
,
60
,
34
,
40
,
14
,
140
,
12
,
120
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
12
,
2
,
2
,
2
};
int
out_n
=
2
;
int
block
[
2
]
=
{
3
,
2
};
int
crops
[
4
]
=
{
1
,
2
,
1
,
1
};
BatchToSpaceForNHWC
(
input
,
output
,
in_shape
,
out_n
,
block
,
crops
,
sizeof
(
float
));
for
(
int
i
=
0
;
i
<
kOutSize
&&
i
<
32
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
}
// namespace mindspore
mindspore/lite/test/ut/src/runtime/kernel/arm/fp32/crop_fp32_test.cc
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "common/common_test.h"
#include "mindspore/lite/src/runtime/kernel/arm/opclib/fp32/crop.h"
namespace
mindspore
{
class
CropTestFp32
:
public
mindspore
::
Common
{
public:
CropTestFp32
()
=
default
;
};
TEST_F
(
CropTestFp32
,
CropTest1
)
{
float
input
[
16
]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
};
const
int
kOutSize
=
2
;
float
expect_out
[
kOutSize
]
=
{
8
,
16
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
2
,
2
,
2
,
2
};
int
out_shape
[
4
]
=
{
2
,
1
,
1
,
1
};
CropParameter
crop_param
;
crop_param
.
axis_
=
1
;
crop_param
.
offset_
[
0
]
=
1
;
crop_param
.
offset_
[
1
]
=
1
;
crop_param
.
offset_
[
2
]
=
1
;
crop_param
.
op_parameter_
.
thread_num_
=
1
;
crop_param
.
thread_id_
=
0
;
Crop4D
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
CropTestFp32
,
CropTest2
)
{
float
input
[
16
]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
};
const
int
kOutSize
=
4
;
float
expect_out
[
kOutSize
]
=
{
13
,
14
,
15
,
16
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
2
,
2
,
2
,
2
};
int
out_shape
[
4
]
=
{
1
,
1
,
2
,
2
};
CropParameter
crop_param
;
crop_param
.
axis_
=
0
;
crop_param
.
offset_
[
0
]
=
1
;
crop_param
.
offset_
[
1
]
=
1
;
crop_param
.
offset_
[
2
]
=
0
;
crop_param
.
offset_
[
3
]
=
0
;
crop_param
.
op_parameter_
.
thread_num_
=
1
;
crop_param
.
thread_id_
=
0
;
Crop4D
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
CropTestFp32
,
CropTest3
)
{
float
input
[
16
]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
};
const
int
kOutSize
=
8
;
float
expect_out
[
kOutSize
]
=
{
2
,
4
,
6
,
8
,
10
,
12
,
14
,
16
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
2
,
2
,
2
,
2
};
int
out_shape
[
4
]
=
{
2
,
2
,
2
,
1
};
CropParameter
crop_param
;
crop_param
.
axis_
=
3
;
crop_param
.
offset_
[
0
]
=
1
;
crop_param
.
op_parameter_
.
thread_num_
=
1
;
crop_param
.
thread_id_
=
0
;
Crop4D
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
CropTestFp32
,
CropTest4
)
{
float
input
[
16
]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
};
const
int
kOutSize
=
8
;
float
expect_out
[
kOutSize
]
=
{
2
,
4
,
6
,
8
,
10
,
12
,
14
,
16
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
2
,
2
,
2
,
2
};
int
out_shape
[
4
]
=
{
2
,
2
,
2
,
1
};
CropParameter
crop_param
;
crop_param
.
axis_
=
3
;
crop_param
.
offset_
[
0
]
=
1
;
crop_param
.
op_parameter_
.
thread_num_
=
2
;
crop_param
.
thread_id_
=
0
;
Crop4D
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
crop_param
.
thread_id_
=
1
;
Crop4D
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
CropTestFp32
,
CropTest5
)
{
float
input
[
16
]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
};
const
int
kOutSize
=
2
;
float
expect_out
[
kOutSize
]
=
{
8
,
16
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
2
,
2
,
2
,
2
};
int
out_shape
[
4
]
=
{
2
,
1
,
1
,
1
};
CropParameter
crop_param
;
crop_param
.
axis_
=
1
;
crop_param
.
offset_
[
0
]
=
1
;
crop_param
.
offset_
[
1
]
=
1
;
crop_param
.
offset_
[
2
]
=
1
;
Crop4DNoParallel
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
CropTestFp32
,
CropTest6
)
{
float
input
[
16
]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
};
const
int
kOutSize
=
4
;
float
expect_out
[
kOutSize
]
=
{
13
,
14
,
15
,
16
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
2
,
2
,
2
,
2
};
int
out_shape
[
4
]
=
{
1
,
1
,
2
,
2
};
CropParameter
crop_param
;
crop_param
.
axis_
=
0
;
crop_param
.
offset_
[
0
]
=
1
;
crop_param
.
offset_
[
1
]
=
1
;
crop_param
.
offset_
[
2
]
=
0
;
crop_param
.
offset_
[
3
]
=
0
;
Crop4DNoParallel
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
CropTestFp32
,
CropTest7
)
{
float
input
[
16
]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
};
const
int
kOutSize
=
8
;
float
expect_out
[
kOutSize
]
=
{
2
,
4
,
6
,
8
,
10
,
12
,
14
,
16
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
2
,
2
,
2
,
2
};
int
out_shape
[
4
]
=
{
2
,
2
,
2
,
1
};
CropParameter
crop_param
;
crop_param
.
axis_
=
3
;
crop_param
.
offset_
[
0
]
=
1
;
Crop4DNoParallel
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
CropTestFp32
,
CropTest8
)
{
float
input
[
27
]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
21
,
22
,
23
,
24
,
25
,
26
,
27
,
28
,
29
};
const
int
kOutSize
=
4
;
float
expect_out
[
kOutSize
]
=
{
15
,
16
,
18
,
19
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
1
,
3
,
3
,
3
};
int
out_shape
[
4
]
=
{
1
,
1
,
2
,
2
};
CropParameter
crop_param
;
crop_param
.
axis_
=
1
;
crop_param
.
offset_
[
0
]
=
1
;
crop_param
.
offset_
[
1
]
=
1
;
crop_param
.
offset_
[
2
]
=
1
;
crop_param
.
op_parameter_
.
thread_num_
=
2
;
crop_param
.
thread_id_
=
0
;
Crop4D
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
crop_param
.
thread_id_
=
1
;
Crop4D
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
CropTestFp32
,
CropTest9
)
{
float
input
[
64
]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
,
11
,
12
,
13
,
14
,
15
,
16
,
17
,
18
,
19
,
110
,
111
,
112
,
113
,
114
,
115
,
116
,
21
,
22
,
23
,
24
,
25
,
26
,
27
,
28
,
29
,
210
,
211
,
212
,
213
,
214
,
215
,
216
,
31
,
32
,
33
,
34
,
35
,
36
,
37
,
38
,
39
,
310
,
311
,
312
,
313
,
314
,
315
,
316
};
const
int
kOutSize
=
8
;
float
expect_out
[
kOutSize
]
=
{
16
,
17
,
110
,
111
,
26
,
27
,
210
,
211
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
1
,
4
,
4
,
4
};
int
out_shape
[
4
]
=
{
1
,
2
,
2
,
2
};
CropParameter
crop_param
;
crop_param
.
axis_
=
1
;
crop_param
.
offset_
[
0
]
=
1
;
crop_param
.
offset_
[
1
]
=
1
;
crop_param
.
offset_
[
2
]
=
1
;
crop_param
.
op_parameter_
.
thread_num_
=
2
;
crop_param
.
thread_id_
=
0
;
Crop4D
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
crop_param
.
thread_id_
=
1
;
Crop4D
(
input
,
output
,
in_shape
,
out_shape
,
&
crop_param
);
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
}
// namespace mindspore
mindspore/lite/test/ut/src/runtime/kernel/arm/fp32/depth_to_space_fp32_test.cc
0 → 100644
浏览文件 @
00fa08ba
/**
* Copyright 2020 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mindspore/core/utils/log_adapter.h"
#include "common/common_test.h"
#include "mindspore/lite/src/runtime/kernel/arm/opclib/depth_to_space.h"
#include "mindspore/lite/src/runtime/kernel/arm/opclib/arithmetic_common.h"
namespace
mindspore
{
class
DepthToSpaceTestFp32
:
public
mindspore
::
Common
{
public:
DepthToSpaceTestFp32
()
=
default
;
};
TEST_F
(
DepthToSpaceTestFp32
,
DepthToSpaceTest2
)
{
float
input
[
16
]
=
{
1
,
2
,
10
,
20
,
5
,
6
,
3
,
8
,
18
,
10
,
11
,
55
,
3
,
4
,
15
,
25
};
constexpr
int
kOutSize
=
16
;
float
expect_out
[
kOutSize
]
=
{
1
,
2
,
5
,
6
,
10
,
20
,
3
,
8
,
18
,
10
,
3
,
4
,
11
,
55
,
15
,
25
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
1
,
2
,
2
,
4
};
int
out_shape
[
4
]
=
{
1
,
4
,
4
,
1
};
DepthToSpaceParameter
param
;
param
.
block_size_
=
2
;
int
in_strides
[
4
];
ComputeStrides
(
in_shape
,
in_strides
,
4
);
int
out_strides
[
4
];
ComputeStrides
(
out_shape
,
out_strides
,
4
);
param
.
in_stride_dim0_
=
in_strides
[
0
];
param
.
in_stride_dim1_
=
in_strides
[
1
];
param
.
in_stride_dim2_
=
in_strides
[
2
];
param
.
out_stride_dim0_
=
out_strides
[
0
];
param
.
out_stride_dim1_
=
out_strides
[
1
];
param
.
out_stride_dim2_
=
out_strides
[
2
];
param
.
data_type_size_
=
sizeof
(
float
);
DepthToSpaceForNHWC
((
const
void
*
)
input
,
output
,
in_shape
,
&
param
);
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
TEST_F
(
DepthToSpaceTestFp32
,
DepthToSpaceTest3
)
{
float
input
[
8
]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
constexpr
int
kOutSize
=
8
;
float
expect_out
[
kOutSize
]
=
{
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
};
float
output
[
kOutSize
];
int
in_shape
[
4
]
=
{
1
,
1
,
1
,
8
};
int
out_shape
[
4
]
=
{
1
,
2
,
2
,
2
};
DepthToSpaceParameter
param
;
param
.
block_size_
=
2
;
int
in_strides
[
4
];
ComputeStrides
(
in_shape
,
in_strides
,
4
);
int
out_strides
[
4
];
ComputeStrides
(
out_shape
,
out_strides
,
4
);
param
.
in_stride_dim0_
=
in_strides
[
0
];
param
.
in_stride_dim1_
=
in_strides
[
1
];
param
.
in_stride_dim2_
=
in_strides
[
2
];
param
.
out_stride_dim0_
=
out_strides
[
0
];
param
.
out_stride_dim1_
=
out_strides
[
1
];
param
.
out_stride_dim2_
=
out_strides
[
2
];
param
.
data_type_size_
=
sizeof
(
float
);
DepthToSpaceForNHWC
((
const
void
*
)
input
,
output
,
in_shape
,
&
param
);
for
(
int
i
=
0
;
i
<
kOutSize
;
++
i
)
{
std
::
cout
<<
output
[
i
]
<<
" "
;
}
std
::
cout
<<
"
\n
"
;
CompareOutputData
(
output
,
expect_out
,
kOutSize
,
0.000001
);
}
}
// namespace mindspore
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录