diff --git a/model_zoo/official/recommend/wide_and_deep/README.md b/model_zoo/official/recommend/wide_and_deep/README.md
index 1cc86e29bceeeb840463578795b261e913dc0efd..4644603279538708a1f92e1f9b64c13d458af02f 100644
--- a/model_zoo/official/recommend/wide_and_deep/README.md
+++ b/model_zoo/official/recommend/wide_and_deep/README.md
@@ -8,7 +8,7 @@
- [Script and Sample Code](#script-and-sample-code)
- [Script Parameters](#script-parameters)
- [Training Script Parameters](#training-script-parameters)
- - [Preprocess Scripts Parameters](#preprocess-script-parameters)
+ - [Preprocess Script Parameters](#preprocess-script-parameters)
- [Dataset Preparation](#dataset-preparation)
- [Process the Real World Data](#process-the-real-world-data)
- [Generate and Process the Synthetic Data](#generate-and-process-the-synthetic-data)
@@ -159,7 +159,7 @@ optional arguments:
--dataset_type The data type of the training files, chosen from tfrecord/mindrecord/hd5.(Default:tfrecord)
--parameter_server Open parameter server of not.(Default:0)
```
-### [Preprocess Scripts Parameters](#contents)
+### [Preprocess Script Parameters](#contents)
```
usage: generate_synthetic_data.py [-h] [--output_file OUTPUT_FILE]
[--label_dim LABEL_DIM]
@@ -197,9 +197,6 @@ usage: preprocess_data.py [-h]
### [Process the Real World Data](#content)
-
-
-
1. Download the Dataset and place the raw dataset under a certain path, such as: ./data/origin_data
```bash
mkdir -p data/origin_data && cd data/origin_data
@@ -319,6 +316,11 @@ Note: The result of GPU is tested under the master version. The parameter server
# [Description of Random Situation](#contents)
+There are three random situations:
+- Shuffle of the dataset.
+- Initialization of some model weights.
+- Dropout operations.
+
# [ModelZoo Homepage](#contents)
diff --git a/model_zoo/official/recommend/wide_and_deep_multitable/README.md b/model_zoo/official/recommend/wide_and_deep_multitable/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..77223d2a283f154dea4dc185f6fd1b50759d1b77
--- /dev/null
+++ b/model_zoo/official/recommend/wide_and_deep_multitable/README.md
@@ -0,0 +1,198 @@
+# Contents
+- [Wide&Deep Description](#widedeep-description)
+- [Model Architecture](#model-architecture)
+- [Dataset](#dataset)
+- [Environment Requirements](#environment-requirements)
+- [Quick Start](#quick-start)
+- [Script Description](#script-description)
+ - [Script and Sample Code](#script-and-sample-code)
+ - [Script Parameters](#script-parameters)
+ - [Training Script Parameters](#training-script-parameters)
+ - [Training Process](#training-process)
+ - [SingleDevice](#singledevice)
+ - [Distribute Training](#distribute-training)
+ - [Evaluation Process](#evaluation-process)
+- [Model Description](#model-description)
+ - [Performance](#performance)
+ - [Training Performance](#training-performance)
+ - [Evaluation Performance](#evaluation-performance)
+- [Description of Random Situation](#description-of-random-situation)
+- [ModelZoo Homepage](#modelzoo-homepage)
+
+
+# [Wide&Deep Description](#contents)
+Wide&Deep model is a classical model in Recommendation and Click Prediction area. This is an implementation of Wide&Deep as described in the [Wide & Deep Learning for Recommender System](https://arxiv.org/pdf/1606.07792.pdf) paper.
+
+# [Model Architecture](#contents)
+Wide&Deep model jointly trained wide linear models and deep neural network, which combined the benefits of memorization and generalization for recommender systems.
+
+# [Dataset](#contents)
+
+- [1] A dataset used in Click Prediction
+
+# [Environment Requirements](#contents)
+- Hardware(Ascend or GPU)
+ - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
+- Framework
+ - [MindSpore](https://gitee.com/mindspore/mindspore)
+- For more information, please check the resources below:
+ - [MindSpore tutorials](https://www.mindspore.cn/tutorial/en/master/index.html)
+ - [MindSpore API](https://www.mindspore.cn/api/en/master/index.html)
+
+
+
+# [Quick Start](#contents)
+
+1. Clone the Code
+```bash
+git clone https://gitee.com/mindspore/mindspore.git
+cd mindspore/model_zoo/official/recommend/wide_and_deep_multitable
+```
+2. Download the Dataset
+
+ > Please refer to [1] to obtain the download link and data preprocess
+3. Start Training
+ Once the dataset is ready, the model can be trained and evaluated on the single device(Ascend) by the command as follows:
+
+```bash
+python train_and_eval.py --data_path=./data/mindrecord --data_type=mindrecord
+```
+To evaluate the model, command as follows:
+```bash
+python eval.py --data_path=./data/mindrecord --data_type=mindrecord
+```
+
+
+# [Script Description](#contents)
+## [Script and Sample Code](#contents)
+```
+└── wide_and_deep_multitable
+ ├── eval.py
+ ├── README.md
+ ├── requirements.txt
+ ├── script
+ │ └── run_multinpu_train.sh
+ ├── src
+ │ ├── callbacks.py
+ │ ├── config.py
+ │ ├── datasets.py
+ │ ├── __init__.py
+ │ ├── metrics.py
+ │ └── wide_and_deep.py
+ ├── train_and_eval_distribute.py
+ └── train_and_eval.py
+```
+
+## [Script Parameters](#contents)
+
+### [Training Script Parameters](#contents)
+
+The parameters is same for ``train_and_eval.py`` and ``train_and_eval_distribute.py``
+
+
+```
+usage: train_and_eval.py [-h] [--data_path DATA_PATH] [--epochs EPOCHS]
+ [--batch_size BATCH_SIZE]
+ [--eval_batch_size EVAL_BATCH_SIZE]
+ [--deep_layers_dim DEEP_LAYERS_DIM [DEEP_LAYERS_DIM ...]]
+ [--deep_layers_act DEEP_LAYERS_ACT]
+ [--keep_prob KEEP_PROB] [--adam_lr ADAM_LR]
+ [--ftrl_lr FTRL_LR] [--l2_coef L2_COEF]
+ [--is_tf_dataset IS_TF_DATASET]
+ [--dropout_flag DROPOUT_FLAG]
+ [--output_path OUTPUT_PATH] [--ckpt_path CKPT_PATH]
+ [--eval_file_name EVAL_FILE_NAME]
+ [--loss_file_name LOSS_FILE_NAME]
+
+WideDeep
+
+optional arguments:
+ --data_path DATA_PATH This should be set to the same directory given to the
+ data_download's data_dir argument
+ --epochs Total train epochs. (Default:200)
+ --batch_size Training batch size.(Default:131072)
+ --eval_batch_size Eval batch size.(Default:131072)
+ --deep_layers_dim The dimension of all deep layers.(Default:[1024,1024,1024,1024])
+ --deep_layers_act The activation function of all deep layers.(Default:'relu')
+ --keep_prob The keep rate in dropout layer.(Default:1.0)
+ --adam_lr The learning rate of the deep part. (Default:0.003)
+ --ftrl_lr The learning rate of the wide part.(Default:0.1)
+ --l2_coef The coefficient of the L2 pernalty. (Default:0.0)
+ --is_tf_dataset IS_TF_DATASET Whether the input is tfrecords. (Default:True)
+ --dropout_flag Enable dropout.(Default:0)
+ --output_path OUTPUT_PATH Deprecated
+ --ckpt_path CKPT_PATH The location of the checkpoint file.(Defalut:./checkpoints/)
+ --eval_file_name EVAL_FILE_NAME Eval output file.(Default:eval.og)
+ --loss_file_name LOSS_FILE_NAME Loss output file.(Default:loss.log)
+```
+## [Training Process](#contents)
+
+### [SingleDevice](#contents)
+
+To train and evaluate the model, command as follows:
+```
+python train_and_eval.py
+```
+
+
+### [Distribute Training](#contents)
+To train the model in data distributed training, command as follows:
+```
+# configure environment path before training
+bash run_multinpu_train.sh RANK_SIZE EPOCHS DATASET RANK_TABLE_FILE
+```
+## [Evaluation Process](#contents)
+To evaluate the model, command as follows:
+```
+python eval.py
+```
+
+# [Model Description](#contents)
+
+## [Performance](#contents)
+
+### Training Performance
+
+| Parameters | Single
Ascend | Data-Parallel-8P |
+| ------------------------ | ------------------------------- | ------------------------------- |
+| Resource | Ascend 910 | Ascend 910 |
+| Uploaded Date | 08/21/2020 (month/day/year) | 08/21/2020 (month/day/year) |
+| MindSpore Version | 0.7.0-beta | 0.7.0-beta |
+| Dataset | [1] | [1] |
+| Training Parameters | Epoch=3,
batch_size=131072 | Epoch=8,
batch_size=131072 |
+| Optimizer | FTRL,Adam | FTRL,Adam |
+| Loss Function | SigmoidCrossEntroy | SigmoidCrossEntroy |
+| AUC Score | 0.7473 | 0.7464 |
+| MAP Score | 0.6608 | 0.6590 |
+| Speed | 284 ms/step | 331 ms/step |
+| Loss | wide:0.415,deep:0.415 | wide:0.419, deep: 0.419 |
+| Parms(M) | 349 | 349 |
+| Checkpoint for inference | 1.1GB(.ckpt file) | 1.1GB(.ckpt file) |
+
+
+
+All executable scripts can be found in [here](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/recommend/wide_and_deep_multitable/script)
+
+### Evaluation Performance
+
+| Parameters | Wide&Deep |
+| ----------------- | --------------------------- |
+| Resource | Ascend 910 |
+| Uploaded Date | 08/21/2020 (month/day/year) |
+| MindSpore Version | 0.7.0-beta |
+| Dataset | [1] |
+| Batch Size | 131072 |
+| Outputs | AUC,MAP |
+| Accuracy | AUC=0.7473,MAP=0.7464 |
+
+# [Description of Random Situation](#contents)
+
+There are three random situations:
+- Shuffle of the dataset.
+- Initialization of some model weights.
+- Dropout operations.
+
+
+# [ModelZoo Homepage](#contents)
+
+Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
\ No newline at end of file