# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import inspect import numpy as np from collections import OrderedDict from paddle import fluid from paddle.fluid.framework import Variable from paddle.fluid.executor import global_scope __all__ = ['uncombined_weight_to_state_dict'] def uncombined_weight_to_state_dict(weight_dir): """ Convert uncombined weight which getted by using `fluid.io.save_params` or `fluid.io.save_persistables` to state_dict Args: weight_dir (str): weight direcotory path. Returns: OrderDict: weight dict. Examples: .. code-block:: python import os from paddle import fluid from paddle.nn import Conv2D, Pool2D, Linear, ReLU, Sequential from paddle.incubate.hapi.utils import uncombined_weight_to_state_dict class LeNetDygraph(fluid.dygraph.Layer): def __init__(self, num_classes=10, classifier_activation='softmax'): super(LeNetDygraph, self).__init__() self.num_classes = num_classes self.features = Sequential( Conv2D( 1, 6, 3, stride=1, padding=1), ReLU(), Pool2D(2, 'max', 2), Conv2D( 6, 16, 5, stride=1, padding=0), ReLU(), Pool2D(2, 'max', 2)) if num_classes > 0: self.fc = Sequential( Linear(400, 120), Linear(120, 84), Linear( 84, 10, act=classifier_activation)) def forward(self, inputs): x = self.features(inputs) if self.num_classes > 0: x = fluid.layers.flatten(x, 1) x = self.fc(x) return x # save weight use fluid.io.save_params save_dir = 'temp' if not os.path.exists(save_dir): os.makedirs(save_dir) start_prog = fluid.Program() train_prog = fluid.Program() x = fluid.data(name='x', shape=[None, 1, 28, 28], dtype='float32') with fluid.program_guard(train_prog, start_prog): with fluid.unique_name.guard(): x = fluid.data( name='x', shape=[None, 1, 28, 28], dtype='float32') model = LeNetDygraph() output = model.forward(x) excutor = fluid.Executor() excutor.run(start_prog) test_prog = train_prog.clone(for_test=True) fluid.io.save_params(excutor, save_dir, test_prog) # convert uncombined weight to state dict state_dict = uncombined_weight_to_state_dict(save_dir) key2key_dict = { 'features.0.weight': 'conv2d_0.w_0', 'features.0.bias': 'conv2d_0.b_0', 'features.3.weight': 'conv2d_1.w_0', 'features.3.bias': 'conv2d_1.b_0', 'fc.0.weight': 'linear_0.w_0', 'fc.0.bias': 'linear_0.b_0', 'fc.1.weight': 'linear_1.w_0', 'fc.1.bias': 'linear_1.b_0', 'fc.2.weight': 'linear_2.w_0', 'fc.2.bias': 'linear_2.b_0' } fluid.enable_imperative() dygraph_model = LeNetDygraph() converted_state_dict = dygraph_model.state_dict() for k1, k2 in key2key_dict.items(): converted_state_dict[k1] = state_dict[k2] # dygraph model load state dict which converted from uncombined weight dygraph_model.set_dict(converted_state_dict) """ def _get_all_params_name(dir): params_name = [] dir = os.path.expanduser(dir) dir_len = len(dir) for root, _, fnames in sorted(os.walk(dir, followlinks=True)): for fname in sorted(fnames): path = os.path.join(root[dir_len:], fname) params_name.append(path) return params_name class Load(fluid.dygraph.Layer): def __init__(self): super(Load, self).__init__() def forward(self, filename): weight = self.create_parameter( shape=[1], dtype='float32', default_initializer=fluid.initializer.ConstantInitializer(0.0)) self._helper.append_op( type='load', inputs={}, outputs={'Out': [weight]}, attrs={'file_path': filename}) return weight params_name_list = _get_all_params_name(weight_dir) if not fluid.in_dygraph_mode(): dygraph_enabled = False fluid.enable_imperative() else: dygraph_enabled = True load = Load() state_dict = OrderedDict() for param_name in params_name_list: param_path = os.path.join(weight_dir, param_name) weight = load(param_path) try: weight = weight.numpy() except Exception as e: print(e) state_dict[param_name] = weight if not dygraph_enabled: fluid.disable_imperative() return state_dict def to_list(value): if value is None: return value if isinstance(value, (list, tuple)): return list(value) return [value] def to_numpy(var): assert isinstance(var, (Variable, fluid.core.VarBase)), "not a variable" if isinstance(var, fluid.core.VarBase): return var.numpy() t = global_scope().find_var(var.name).get_tensor() return np.array(t) def flatten_list(l): assert isinstance(l, list), "not a list" outl = [] splits = [] for sl in l: assert isinstance(sl, list), "sub content not a list" splits.append(len(sl)) outl += sl return outl, splits def restore_flatten_list(l, splits): outl = [] for split in splits: assert len(l) >= split, "list length invalid" sl, l = l[:split], l[split:] outl.append(sl) return outl def extract_args(func): if hasattr(inspect, 'getfullargspec'): return inspect.getfullargspec(func)[0] else: return inspect.getargspec(func)[0]