# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function __all__ = [ 'Role', 'RoleMakerBase', 'MPISymetricRoleMaker', 'UserDefinedRoleMaker', 'UserDefinedCollectiveRoleMaker', 'PaddleCloudRoleMaker' ] import os class Role: WORKER = 1 SERVER = 2 class RoleMakerBase(object): """ RoleMakerBase is a base class for assigning a role to current process in distributed training. A paddle developer can implement RoleMakerBase to design a role maker for worker or pserver assignment. """ def __init__(self): self._worker_endpoints = [] self._server_endpoints = [] self._role_is_generated = False self._role = None self._current_id = -1 def is_worker(self): """ return is_worker() of current process """ raise NotImplementedError("Please implement this method in child class") def is_server(self): """ return is_server() of current process """ raise NotImplementedError("Please implement this method in child class") def is_first_worker(self): """ Check whether the node is the first instance of worker. Returns: bool: True if this is the first node of worker, False if not. """ raise NotImplementedError("Please implement this method in child class") def worker_num(self): """ Get current total worker number. Returns: int: worker number """ raise NotImplementedError("Please implement this method in child class") def worker_index(self): """ Get current worker id. Returns: int: node id """ raise NotImplementedError("Please implement this method in child class") def server_index(self): """ Get current server id. Returns: int: node id """ raise NotImplementedError("Please implement this method in child class") def get_trainer_endpoints(self): """ return trainer endpoints """ return self._worker_endpoints def get_pserver_endpoints(self): """ return pserver endpoints """ return self._server_endpoints class MultiProcessRoleMaker(RoleMakerBase): """ MultiProcessRoleMaker is a default role maker for multi-process GPU training. It works with paddle.distributed.lanuch.py by-design """ def __init__(self): super(MultiProcessRoleMaker, self).__init__() self._role_is_generated = False def generate_role(self): import os if not self._role_is_generated: self._current_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) self._num_trainers = 1 self._training_role = os.getenv("PADDLE_TRAINING_ROLE", "TRAINER") assert (self._training_role == "TRAINER") self._worker_endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS") self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT") if self._worker_endpoints: self._worker_endpoints = self._worker_endpoints.split(",") self._num_trainers = len(self._worker_endpoints) self._role_is_generated = True def is_worker(self): return True def is_server(self): return False def is_first_worker(self): return self._current_id == 0 def worker_index(self): return self._current_id def worker_num(self): return self._worker_num class MPIRoleMaker(RoleMakerBase): """ MPIRoleMaker is a MPI-API based role maker which is a counter-part of K8SRoleMaker mpi4py will be used if a developer inherits MPIRoleMaker """ def __init__(self): super(MPIRoleMaker, self).__init__() from mpi4py import MPI self.MPI = MPI self._comm = MPI.COMM_WORLD self._node_type_comm = None self._ips = None self._ip = None def _get_rank(self): """ return rank """ self._rank = self._comm.Get_rank() return self._rank def _get_size(self): """ return size """ self._size = self._comm.Get_size() return self._size def _all_gather(self, obj): """ all_gather(obj) will call MPI's allgather function """ self._barrier_all() return self._comm.allgather(obj) def _worker_gather(self, obj): """ worker_gather(obj) will call MPI's allgather function """ if self.is_worker(): self._node_type_comm.barrier() return self._node_type_comm.allgather(obj) return None def _barrier_all(self): """ barrier_all() will call MPI's barrier_all function """ self._comm.barrier() def _finalize(self): """ finalize the current MPI instance. """ self.MPI.Finalize() def _get_ips(self): """ collect current distributed job's ip list """ if not self._ips: self._ips = self._comm.allgather(self.get_local_ip()) return self._ips def get_local_ip(self): """ return get local ip """ import socket self._ip = socket.gethostbyname(socket.gethostname()) return self._ip def generate_role(self): """ generate_role() should be called to identify current process's role """ raise NotImplementedError("Please implement this method in child class") class MPISymetricRoleMaker(MPIRoleMaker): """ MPISymetricRoleMaker is designed for worker and server assignment under MPI. Typically, a worker and a server node will be appointed on each physical node. This role maker can be only used under MPI. """ def __init__(self): super(MPISymetricRoleMaker, self).__init__() self._node_type = None self._proc_per_node = 2 def _check_role_generation(self): if not self._role_is_generated: raise NameError("generate_role() should be called first") return True def is_first_worker(self): """ return whether current process is the first worker assigned by role maker """ if self._check_role_generation(): return self.is_worker() and 0 == self.worker_index() return False def worker_num(self): return self._worker_num() def is_worker(self): """ return whether current process is worker assigned by role maker """ if self._check_role_generation(): return self._node_type == 1 return False def is_server(self): """ return whether current process is server assigned by role maker """ if self._check_role_generation(): return self._node_type == 0 return False def _worker_num(self): """ return the current number of worker """ if self._check_role_generation(): if self.is_worker(): return self._get_size() / 2 return 0 def _server_num(self): """ return the current number of server """ if self._check_role_generation(): if self.is_server(): return self._get_size() / 2 return 0 def worker_index(self): """ return the index of worker """ if self._check_role_generation(): return self._rank / self._proc_per_node return 0 def server_index(self): """ return the index of server """ if self._check_role_generation(): return self._rank / self._proc_per_node return 0 def _barrier_worker(self): """ barrier all workers in current distributed job """ if self._check_role_generation(): if self.is_worker(): self._node_type_comm.barrier() def _barrier_server(self): """ barrier all servers in current distributed job """ if self._check_role_generation(): if self.is_server(): self._node_type_comm.barrier() def generate_role(self): """ generate currently process's role """ if not self._role_is_generated: # TODO(guru4elephant): only allow to be called once self._worker_endpoints = self._get_ips()[1::2] self._server_endpoints = self._get_ips()[::2] if 0 == self._get_rank() % self._proc_per_node % 2: self._node_type = 0 else: self._node_type = 1 self._node_type_comm = self._comm.Split(self._node_type) self._role_is_generated = True class PaddleCloudRoleMaker(RoleMakerBase): def __init__(self): super(PaddleCloudRoleMaker, self).__init__() self._role_is_generated = False def generate_role(self): if not self._role_is_generated: self.port = os.getenv("PADDLE_PORT", "6174") self.pserver_ips = os.getenv("PADDLE_PSERVERS", "") eplist = [] for ip in self.pserver_ips.split(","): eplist.append(':'.join([ip, self.port])) self.endpoints = ",".join(eplist) self._trainers = int(os.getenv("PADDLE_TRAINERS_NUM", "1")) self.current_endpoint = os.getenv("POD_IP", "localhost") + ":" + self.port self.role = os.getenv("TRAINING_ROLE", "TRAINER") self.trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0")) self.eplist = eplist print("PaddleCloudRoleMaker() endpoints: %s" % self.endpoints) self.endpoints = self.endpoints.split(",") self._server_endpoints = self.endpoints self._worker_endpoints = self.endpoints if self.role.upper() == "PSERVER": self._current_id = self.endpoints.index(self.current_endpoint) self._role = Role.SERVER else: self._current_id = self.trainer_id self._role = Role.WORKER self._role_is_generated = True def is_worker(self): if not self._role_is_generated: self.generate_role() return self._role == Role.WORKER def is_server(self): if not self._role_is_generated: self.generate_role() return self._role == Role.SERVER def is_first_worker(self): if not self._role_is_generated: self.generate_role() return self._role == Role.WORKER and self._current_id == 0 def worker_index(self): if not self._role_is_generated: self.generate_role() return self._current_id def server_index(self): if not self._role_is_generated: self.generate_role() return self._current_id def worker_num(self): if not self._role_is_generated: self.generate_role() return self._trainers class UserDefinedRoleMaker(RoleMakerBase): def __init__(self, current_id=0, role=Role.WORKER, worker_num=0, server_endpoints=None): """ UserDefinedRoleMaker is designed for worker and server assignment under manual. Typically, a worker and a server node will be appointed on each physical node, It can be assign by user. """ super(UserDefinedRoleMaker, self).__init__() if not isinstance(current_id, int): raise TypeError("current_id must be as int") else: if current_id < 0: raise ValueError("current_id must be gather or equal 0") self._current_id = current_id if role != Role.WORKER and role != Role.SERVER: raise TypeError("role must be as Role") else: self._role = role if not isinstance(worker_num, int): raise TypeError("worker_num must be as int") else: if worker_num < 0: raise ValueError("worker_num must be gather or equal 0") self._worker_num = worker_num if not isinstance(server_endpoints, list): raise TypeError("server_endpoints must be as string list") else: self._server_endpoints = server_endpoints def generate_role(self): self._role_is_generated = True def is_worker(self): return self._role == Role.WORKER def is_server(self): return self._role == Role.SERVER def is_first_worker(self): return self._role == Role.WORKER and self._current_id == 0 def worker_index(self): return self._current_id def server_index(self): return self._current_id def worker_num(self): return self._worker_num class UserDefinedCollectiveRoleMaker(RoleMakerBase): def __init__(self, current_id=0, worker_endpoints=None): """ UserDefinedCollectiveRoleMaker is designed for worker assignment under manual for collective mode. """ super(UserDefinedCollectiveRoleMaker, self).__init__() if not isinstance(current_id, int): raise TypeError("current_id must be as int") else: if current_id < 0: raise ValueError("current_id must be greater or equal 0") self._current_id = current_id if not isinstance(worker_endpoints, list): raise TypeError("worker_endpoints must be as string list") else: self._worker_endpoints = worker_endpoints self._worker_num = len(self._worker_endpoints) def generate_role(self): self._role_is_generated = True def is_worker(self): return True def is_first_worker(self): return self._current_id == 0 def worker_index(self): return self._current_id def worker_num(self): return self._worker_num