// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/conv_transpose_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/cpu/conv_util.h" namespace phi { // target_len == 2 || target_len == 4 inline std::vector vector_extend(const std::vector& src, int target_len) { if (target_len == 2 && src.size() == 1) { return {src[0], src[0]}; } if (target_len == 4 && src.size() == 1) { return {src[0], src[0], src[0], src[0]}; } if (target_len == 4 && src.size() == 2) { return {src[0], src[0], src[1], src[1]}; } return src; } template void Conv2dTransposeKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& filter, const std::vector& strides, const std::vector& paddings, const std::vector& output_padding, const IntArray& output_size, const std::string& padding_algorithm, int groups, const std::vector& dilations, const std::string& data_format, DenseTensor* out) { // The filter will be reshaped in the calculations, // so here use an assignment operation, // that avoids modifying the variable in the Scope. DenseTensor filter_ = filter; ctx.template Alloc(out); PADDLE_ENFORCE_EQ( data_format == "NHWC" || data_format == "NDHWC", false, errors::InvalidArgument( ("XPU do support data_format is NCHW in conv_transpose op."))); DDim in_data_dims = slice_ddim(x.dims(), 2, x.dims().size()); DDim filter_data_dims = slice_ddim(filter_.dims(), 2, filter_.dims().size()); std::vector ksize = vectorize(filter_data_dims); std::vector paddings_ = paddings; std::vector dilations_ = dilations; UpdatePaddingAndDilation( &paddings_, &dilations_, padding_algorithm, in_data_dims, strides, ksize); const int batch_size = static_cast(x.dims()[0]); const int img_yc = static_cast(x.dims()[1]); const int img_yh = static_cast(x.dims()[2]); const int img_yw = static_cast(x.dims()[3]); const int img_xc = static_cast(out->dims()[1]); const int img_xh = static_cast(out->dims()[2]); const int img_xw = static_cast(out->dims()[3]); { std::vector ksize_check = vector_extend(ksize, 2); std::vector stride_check = vector_extend(strides, 2); std::vector pad_check = vector_extend(paddings_, 4); std::vector dilation_check = vector_extend(dilations_, 2); int xh_check = (img_yh - 1) * stride_check[0] - pad_check[0] - pad_check[1] + (dilation_check[0] * (ksize_check[0] - 1) + 1); int xw_check = (img_yw - 1) * stride_check[1] - pad_check[2] - pad_check[3] + (dilation_check[1] * (ksize_check[1] - 1) + 1); PADDLE_ENFORCE_EQ( xh_check == img_xh && xw_check == img_xw, true, errors::InvalidArgument( ("XPU output size check error in conv_transpose op."))); } int r = xpu::conv2d_transpose(ctx.x_context(), x.data(), filter_.data(), out->data(), batch_size, img_yc, img_yh, img_yw, img_xc, ksize, strides, paddings_, dilations_, groups, nullptr, nullptr, nullptr, true); PADDLE_ENFORCE_XDNN_SUCCESS(r, "conv2d_transpose"); } } // namespace phi PD_REGISTER_KERNEL( conv2d_transpose, XPU, ALL_LAYOUT, phi::Conv2dTransposeKernel, float) {}