// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/conv_transpose_kernel.h" #include "paddle/phi/common/layout.h" #include "paddle/phi/core/ddim.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/cpu/conv_util.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/gpu/depthwise_conv.h" #include "paddle/phi/kernels/impl/conv_transpose_kernel_impl.h" namespace phi { template void DepthwiseConv2dTransposeKernel(const Context& ctx, const DenseTensor& x, const DenseTensor& filter, const std::vector& strides, const std::vector& paddings, const std::vector& output_padding, const IntArray& output_size, const std::string& padding_algorithm, int groups, const std::vector& dilations, const std::string& data_format, DenseTensor* out) { const DataLayout data_layout = paddle::framework::StringToDataLayout(data_format); DenseTensor filter_ = filter; ctx.template Alloc(out); PADDLE_ENFORCE_EQ( groups, filter_.dims()[0], errors::InvalidArgument( "groups should be error to the 1st dimension of filter_. But " "received groups is %d and filter dimension[0] is %d", groups, filter_.dims()[0])); std::vector paddings_ = paddings; std::vector dilations_ = dilations; for (auto v : dilations_) { PADDLE_ENFORCE_EQ( v, 1, errors::InvalidArgument("dilations should be 1 in depthwise conv. " "But received dilations is %d", v)); } auto x_dims = x.dims(); auto filter_dims = filter_.dims(); DDim in_data_dims; if (data_layout != DataLayout::kNHWC) { in_data_dims = slice_ddim(x_dims, 2, x_dims.size()); } else { in_data_dims = slice_ddim(x_dims, 1, x_dims.size() - 1); } DDim filter_data_dims = slice_ddim(filter_dims, 2, filter_dims.size()); std::vector ksize = vectorize(filter_data_dims); UpdatePaddingAndDilation( &paddings_, &dilations_, padding_algorithm, in_data_dims, strides, ksize); ctx.template Alloc(out); funcs::SetConstant set_zero; set_zero(ctx, out, static_cast(0)); paddle::operators::math::DepthwiseConvInputGradFunctor depthwiseConvInputGrad; depthwiseConvInputGrad( ctx, *out, filter, x, strides, std::vector{paddings_[0], paddings_[2], paddings_[1], paddings_[3]}, dilations_, out, data_layout); } } // namespace phi PD_REGISTER_KERNEL(conv2d_transpose, GPU, ALL_LAYOUT, phi::Conv2dTransposeKernel, float, double) {} PD_REGISTER_KERNEL(conv3d_transpose, GPU, ALL_LAYOUT, phi::Conv3dTransposeKernel, float, double) {} PD_REGISTER_KERNEL(depthwise_conv2d_transpose, GPU, ALL_LAYOUT, phi::DepthwiseConv2dTransposeKernel, float, double) {}