# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from paddle import fluid from .meta_optimizer_base import MetaOptimizerBase from paddle.fluid import core import subprocess import re import platform class ParameterServerOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super(ParameterServerOptimizer, self).__init__(optimizer) self.inner_opt = optimizer # we do not allow meta optimizer to be inner optimizer currently self.meta_optimizers_white_list = [] def _is_graph_out(self): return False def _can_apply(self): if self.role_maker._is_collective: return False if self.user_defined_strategy.auto == True: return True k_steps = self.user_defined_strategy.a_sync_configs["k_steps"] return True if k_steps >= 0 else False def _get_distributed_strategy(self): from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory k_steps = self.user_defined_strategy.a_sync_configs["k_steps"] strategy = None if not self.user_defined_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_sync_strategy() if self.user_defined_strategy.a_sync and k_steps == 0: strategy = StrategyFactory.create_async_strategy() if self.user_defined_strategy.a_sync and k_steps > 0: strategy = StrategyFactory.create_geo_strategy(k_steps) if not strategy: raise ValueError("k_steps must be invalid value, please check") return strategy def _build_trainer_programs(self, compiled_config): from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker _main = compiled_config.origin_main_program.clone() _startup = compiled_config.origin_startup_program.clone() if not compiled_config.is_geo_mode(): # for main program _main = worker.delete_optimizer_pass(_main, compiled_config) _main = worker.distributed_ops_pass(_main, compiled_config) _main = worker.append_send_ops_pass(_main, compiled_config) # for startup program _startup = worker.fake_init_ops_pass(_startup, compiled_config) _startup = worker.init_from_server_pass(_startup, compiled_config) _startup = worker.delet_extra_optimizes_pass(_startup, compiled_config) # for heter program if self.role_maker._is_heter_parameter_server_mode: from paddle.fluid.incubate.fleet.parameter_server.ir import heter_trainer_pass as heter_worker if self.role_maker._is_heter_worker(): # for heter worker _main = heter_worker.split_heter_worker_ops_pass( _main, compiled_config) else: # for default worker _main = heter_worker.split_trainer_ops_pass(_main, compiled_config) # for startup change _startup = heter_worker.delete_startup_useless_ops_var_pass( _startup, _main, compiled_config) else: _main = worker.append_send_ops_pass(_main, compiled_config) _startup = _startup return _main, _startup def _build_pserver_programs(self, compiled_config): from paddle.fluid.incubate.fleet.parameter_server.ir import pserver_pass as server _main = fluid.Program() _startup = fluid.Program() if not compiled_config.is_geo_mode(): _main = server.add_listen_and_serv_pass(_main, compiled_config) _main = server.add_rpc_global_flags_pass(_main, compiled_config) _main = server.add_optimizer_pass(_main, compiled_config) _main = server.large_scale_sparse_pass(_main, _main, compiled_config, False) _startup = server.build_pserver_startup_program_pass( _startup, _main, compiled_config) _startup = server.large_scale_sparse_pass(_startup, _main, compiled_config, True) if not compiled_config.is_sync_mode(): _main = server.delete_unused_in_main_pass(_main, compiled_config) _startup = server.delete_unused_in_startup_pass(_startup, _main, compiled_config) else: _main = server.add_listen_and_serv_pass(_main, compiled_config) _main = server.add_rpc_global_flags_pass(_main, compiled_config) _main = server.add_geo_optimizer_pass(_main, compiled_config) _main = server.large_scale_sparse_pass(_main, _main, compiled_config, False) _startup = server.build_pserver_startup_program_pass( _startup, _main, compiled_config) _startup = server.large_scale_sparse_pass(_startup, _main, compiled_config, True) _startup = server.delete_unused_in_startup_pass(_startup, _main, compiled_config) return _main, _startup def _try_auto_apply_geo(self, program, compiled_config): def get_sys_free_mem(): plat = platform.system() if platform.system() == "Darwin": vm = subprocess.Popen( ['vm_stat'], stdout=subprocess.PIPE).communicate()[0] # Process vm_stat vmLines = vm.split('\n') sep = re.compile(':[\s]+') vmStats = {} for row in range(1, len(vmLines) - 2): rowText = vmLines[row].strip() rowElements = sep.split(rowText) vmStats[(rowElements[0] )] = int(rowElements[1].strip('\.')) * 4096 return vmStats["Pages free"] elif platform.system() == "Linux": mems = {} with open('/proc/meminfo', 'rb') as f: for line in f: fields = line.split() mems[fields[0]] = int(fields[1]) * 1024 free = mems[b'MemFree:'] return free else: raise ValueError( "%s platform is unsupported is parameter server optimizer" % (platform.system())) if self.user_defined_strategy.auto == False: return a_sync_configs = self.user_defined_strategy.a_sync_configs if a_sync_configs["k_steps"] >= 0: return self.user_defined_strategy.a_sync = True if not isinstance(self.inner_opt, fluid.optimizer.SGDOptimizer): # auto async a_sync_configs["k_steps"] = 0 self.user_defined_strategy.a_sync_configs = a_sync_configs return from paddle.fluid.incubate.fleet.parameter_server.ir.vars_metatools import dtype_to_size free = get_sys_free_mem() param_grad_pairs = compiled_config.origin_sparse_pairs + compiled_config.origin_dense_pairs processed_var_names = set(["@EMPTY@"]) param_memory_size = 0 for param_grad_pair in param_grad_pairs: param, grad = param_grad_pair param_memory_size += param.m_size processed_var_names.add(param.name) upper_mem_use = param_memory_size * 5.0 program_tmp_vars = dict() batch_size = 1024 for op in program.global_block().ops: for var_name in op.output_arg_names: if var_name in processed_var_names: continue processed_var_names.add(var_name) var = program.global_block().vars[var_name] if var.desc.type() != core.VarDesc.VarType.LOD_TENSOR: continue data_count = 1 neg_dim_count = 0 for x in var.shape: if x < 0: if neg_dim_count >= 1: raise ValueError( "Var %s has more than one negative dim." % (var_name)) neg_dim_count += 1 data_count *= (-x) else: data_count *= x program_tmp_vars[var_name] = (data_count, neg_dim_count, dtype_to_size[var.dtype]) for varname in program_tmp_vars: data_count, neg_dim_count, type_size = program_tmp_vars[varname] if neg_dim_count == 1: data_count *= batch_size var_memory = data_count * type_size upper_mem_use += var_memory if upper_mem_use < free: # auto geo a_sync_configs["k_steps"] = 800 else: # auto async a_sync_configs["k_steps"] = 0 self.user_defined_strategy.a_sync_configs = a_sync_configs def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): self.inner_opt.minimize(loss, startup_program, parameter_list, no_grad_set) _origin_main_program = loss.block.program _origin_startup_program = startup_program from paddle.fluid.incubate.fleet.parameter_server.ir import public as public compiled_config = public.CompileTimeStrategy(_origin_main_program, _origin_startup_program, None, self.role_maker) self._try_auto_apply_geo(_origin_main_program, compiled_config) strategy = self._get_distributed_strategy() compiled_config.strategy = strategy if self.role_maker.is_worker() or self.role_maker._is_heter_worker(): main_program, startup_program = self._build_trainer_programs( compiled_config) elif self.role_maker.is_server(): main_program, startup_program = self._build_pserver_programs( compiled_config) loss.block.program = main_program fluid.framework.switch_startup_program(startup_program) return None, None def _disable_strategy(self, dist_strategy): dist_strategy.a_sync_configs = {} self.user_defined_strategy.a_sync_configs = {} def _enable_strategy(self, dist_strategy): dist_strategy.a_sync = True dist_strategy.a_sync_configs = {}