from paddle.trainer_config_helpers import * is_predict = get_config_arg("is_predict", bool, False) ####################Data Configuration ################## if not is_predict: data_dir = './data/' define_py_data_sources2( train_list=data_dir + 'train.list', test_list=data_dir + 'test.list', module='mnist_provider', obj='process') ######################Algorithm Configuration ############# # settings( # batch_size=128, # learning_rate=0.1 / 128.0, # learning_method=MomentumOptimizer(0.9), # regularization=L2Regularization(0.0005 * 128)) settings( batch_size=50, learning_rate=0.001, learning_method=AdamOptimizer()) #######################Network Configuration ############# data_size = 1 * 28 * 28 label_size = 10 img = data_layer(name='pixel', size=data_size) # small_vgg is predined in trainer_config_helpers.network # predict = small_vgg(input_image=img, num_channels=1, num_classes=label_size) # light cnn def light_cnn(input_image, num_channels, num_classes): def __light__(ipt, num_filter=128, times=1, conv_filter_size=3, dropouts=0, num_channels_=None): return img_conv_group( input=ipt, num_channels=num_channels_, pool_size=2, pool_stride=2, conv_padding=0, conv_num_filter=[num_filter] * times, conv_filter_size=conv_filter_size, conv_act=ReluActivation(), conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, pool_type=MaxPooling()) tmp = __light__(input_image, num_filter=128, num_channels_=num_channels) tmp = __light__(tmp, num_filter=128) tmp = __light__(tmp, num_filter=128) tmp = __light__(tmp, num_filter=128, conv_filter_size=1) #tmp = img_pool_layer(input=tmp, stride=2, pool_size=2, pool_type=MaxPooling()) #tmp = dropout_layer(input=tmp, dropout_rate=0.5) tmp = fc_layer(input=tmp, size = num_classes, act=SoftmaxActivation()) # tmp = fc_layer(input=tmp, size=512, layer_attr=ExtraAttr(drop_rate=0.5), act=LinearActivation()) # tmp = batch_norm_layer(input=tmp, act=ReluActivation()) # return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation()) return tmp predict = light_cnn(input_image=img, num_channels=1, num_classes=label_size) if not is_predict: lbl = data_layer(name="label", size=label_size) inputs(img, lbl) outputs(classification_cost(input=predict, label=lbl)) else: outputs(predict)