# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.fluid as fluid import paddle from paddle import complex as cpx import paddle.fluid.dygraph as dg import numpy as np import unittest class TestComplexReshape(unittest.TestCase): def setUp(self): self._dtypes = ["float32", "float64"] self._places = [paddle.CPUPlace()] if fluid.core.is_compiled_with_cuda(): self._places.append(paddle.CUDAPlace(0)) def test_case1(self): for dtype in self._dtypes: x_np = np.random.randn( 2, 3, 4).astype(dtype) + 1j * np.random.randn(2, 3, 4).astype(dtype) shape = (2, -1) for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) y_var = cpx.reshape(x_var, shape) y_np = y_var.numpy() np.testing.assert_allclose(np.reshape(x_np, shape), y_np) def test_case2(self): for dtype in self._dtypes: x_np = np.random.randn( 2, 3, 4).astype(dtype) + 1j * np.random.randn(2, 3, 4).astype(dtype) shape = (0, -1) shape_ = (2, 12) for place in self._places: with dg.guard(place): x_var = dg.to_variable(x_np) y_var = cpx.reshape(x_var, shape, inplace=True) y_np = y_var.numpy() np.testing.assert_allclose(np.reshape(x_np, shape_), y_np) def test_case3(self): for dtype in self._dtypes: x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) shape = (2, -1) for place in self._places: with dg.guard(place): x_var = paddle.Tensor( value=x_np, place=fluid.framework._current_expected_place(), persistable=False, zero_copy=None, stop_gradient=True) y_var = fluid.layers.reshape(x_var, shape) y_np = y_var.numpy() np.testing.assert_allclose(np.reshape(x_np, shape), y_np) def test_case4(self): for dtype in self._dtypes: x_np = np.random.randn(2, 3, 4) + 1j * np.random.randn(2, 3, 4) shape = (0, -1) shape_ = (2, 12) for place in self._places: with dg.guard(place): x_var = paddle.Tensor( value=x_np, place=fluid.framework._current_expected_place(), persistable=False, zero_copy=None, stop_gradient=True) y_var = fluid.layers.reshape(x_var, shape) y_np = y_var.numpy() np.testing.assert_allclose(np.reshape(x_np, shape_), y_np) if __name__ == "__main__": unittest.main()