# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from ..fluid.framework import Variable, in_dygraph_mode from ..fluid.initializer import Constant from ..fluid.layers import core from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder from ..fluid.layers import fill_constant from paddle.common_ops_import import * # TODO: define functions to get create a tensor from ..fluid.layers import crop_tensor #DEFINE_ALIAS from ..fluid.layers import diag #DEFINE_ALIAS from ..fluid.layers import eye #DEFINE_ALIAS from ..fluid.layers import fill_constant #DEFINE_ALIAS __all__ = [ # 'create_tensor', # 'create_lod_tensor', # 'create_random_int_lodtensor', 'crop_tensor', 'diag', 'eye', 'fill_constant', # 'get_tensor_from_selected_rows', 'linspace', 'ones', 'ones_like', 'zeros', 'zeros_like', 'arange', 'eye', 'full', 'full_like', 'triu', 'tril', 'meshgrid' ] def full_like(input, fill_value, out=None, dtype=None, device=None, stop_gradient=True, name=None): """ **full_like** This function creates a tensor filled with `fill_value` which has identical shape and dtype with `input`. Args: input(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64. fill_value(bool|float|int): The value to fill the tensor with. Default value is 0. Note: this value shouldn't exceed the range of the output data type. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. If out is None, a new Varibale will be create to store the result. Default value is None. dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The default value is None, which means the output data type is the same as input. device (string, optional): Which device to run the operator. The :attr:`device` must be None, 'cpu', 'gpu'. If :attr:`device` is None, it will be the device that the user set in the paddle program. Default value is None. stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable. Default value is True. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: out(Variable): The Tensor variable storing the output. Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np input = fluid.data(name='input', dtype='float32', shape=[2, 3]) output = paddle.full_like(input, 2.0) exe = fluid.Executor(fluid.CPUPlace()) exe.run(fluid.default_startup_program()) img=np.array([[1, 2, 3], [4, 5, 6]]).astype(np.float32) res = exe.run(fluid.default_main_program(), feed={'input':img}, fetch_list=[output]) print(res) # [array([[2., 2., 2.], [2., 2., 2.]], dtype=float32)] """ helper = LayerHelper("full_like", **locals()) var_dtype = None if dtype is None: var_dtype = input.dtype else: check_dtype( dtype, 'dtype', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'full_like') var_dtype = convert_np_dtype_to_dtype_(dtype) if out is None: out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='fill_any_like', inputs={'X': [input]}, attrs={'value': fill_value, "dtype": var_dtype}, outputs={'Out': [out]}) out.stop_gradient = stop_gradient return out def linspace(start, stop, num, dtype, out=None, device=None, name=None): """ This OP return fixed number of evenly spaced values within a given interval. **NOTICE**: The output of this OP has no gradient. Args: start(float|Variable): The input :attr:`start` is start variable of range. It is a float scalar, \ or a tensor of shape [1] with input data type float32, float64. stop(float|Variable): The input :attr:`stop` is start variable of range. It is a float scalar, \ or a tensor of shape [1] with input data type float32, float64. num(int|Variable): The input :attr:`num` is given num of the sequence. It is an int scalar, \ or a tensor of shape [1] with type int32. dtype(string): The data type of output tensor, it could be 'float32' and 'float64'. out (Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. Default: None. device (string, optional): Which device to run the operator. The :attr:`device` must be None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in the paddle program. Default: None. name(str, optional): Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.Default: None. Returns: Variable, the output data type will be float32, float64.: The 1-D tensor with fixed number of evenly spaced values, \ the data shape of this tensor is :math:`[num]` . If the :attr:`num` is set 1, the output tensor just has \ the value with input :attr:`start`. Examples: .. code-block:: python import paddle data = paddle.linspace(0, 10, 5, dtype='float32') # [0.0, 2.5, 5.0, 7.5, 10.0] data = paddle.linspace(0, 10, 1, dtype='float32') # [0.0] """ helper = LayerHelper("linspace", **locals()) if not isinstance(start, Variable): start = fill_constant([1], dtype, start) if not isinstance(stop, Variable): stop = fill_constant([1], dtype, stop) if not isinstance(num, Variable): num = fill_constant([1], 'int32', num) if out is None: out = helper.create_variable_for_type_inference(dtype=start.dtype) else: check_dtype( out.dtype, out.name, convert_dtype(start.dtype), 'linspace', "The out data type '%s' in linspace must be the same with '%s' seted by parameter 'dtype'." % (out.dtype, dtype)) if name: warning.warn( "The output Variable name of the paddle.tensor.linspace operation can only be given by parameter out or name.\ When parameter out and name are set at the same time, out has a higher priority than name. \ Finally, the output Variable name is same as the out name %s." % out.name, category=UserWarning, stacklevel=2) if device is not None: if device not in ['cpu', 'gpu']: raise ValueError( "The value of 'device' in linspace operation must be cpu or gpu, but received %s." % (device)) else: with device_guard(device): helper.append_op( type='linspace', inputs={'Start': start, 'Stop': stop, 'Num': num}, outputs={'Out': [out]}) else: helper.append_op( type='linspace', inputs={'Start': start, 'Stop': stop, 'Num': num}, outputs={'Out': [out]}) return out def ones(shape, dtype=None, out=None, device=None): """ The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1. Args: shape(tuple|list): Shape of output tensor. dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports bool, float16, float32, float64, int32 and int64. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. device(str, optional): Which device to run the operator. The :attr:`device` must be None,'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in the paddle program. Default value is False. Returns: Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1. Examples: .. code-block:: python import paddle data = paddle.ones(shape=[3, 2], dtype='float32') # [[1., 1.], [1., 1.], [1., 1.]] data = paddle.ones(shape=[2, 2], dtype='float32', device='cpu') # [[1., 1.], [1., 1.]] """ check_dtype(dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'zeros') if device is not None: if device not in ['cpu', 'gpu']: raise ValueError( "The value of 'device' in zeros_op must be cpu or gpu, but received %s." % (device)) with fluid.device_guard(device): return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out) return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out) def ones_like(input, dtype=None, device=None, name=None): """ This function creates a ones tensor which has identical shape and dtype with `input`. Args: input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be float32, float64, int32, int64. dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64. The default value is None, the dtype is the same as input. device(str, optional): Which device to run the operator. The :attr:`device` must be None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in the paddle program. Default value is None. name(str, optional): The name of output variable, normally there is no need for user to set this this property. Default value is None, the framework set the name of output variable. Returns: out(Variable): The tensor variable storing the output. Examples: .. code-block:: python import paddle import paddle.fluid as fluid x = fluid.data(name='x', dtype='float32', shape=[3]) data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0] data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0] """ helper = LayerHelper("zeros_like", **locals()) attrs = {"value": 1.0} var_dtype = None if dtype is not None: check_dtype( dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'zeros_like') var_dtype = convert_np_dtype_to_dtype_(dtype) attrs["dtype"] = var_dtype else: var_dtype = input.dtype out = helper.create_variable_for_type_inference(dtype=var_dtype) if device is not None: if device not in ['cpu', 'gpu']: raise ValueError( "The value of 'device' in zeros_op must be cpu or gpu, but received %s." % (device)) with fluid.device_guard(device): helper.append_op( type='fill_any_like', inputs={'X': [input]}, attrs=attrs, outputs={'Out': [out]}) return out helper.append_op( type='fill_any_like', inputs={'X': [input]}, attrs=attrs, outputs={'Out': [out]}) out.stop_gradient = True return out def zeros(shape, dtype, out=None, device=None): """ The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0. Args: shape(tuple|list): Shape of output tensor. dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports bool, float16, float32, float64, int32 and int64. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. device(str, optional): Which device to run the operator. The :attr:`device` must be None,'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in the paddle program. Default value is False. Returns: Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0. Examples: .. code-block:: python import paddle data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]] data = paddle.zeros(shape=[2, 2], dtype='float32', device='cpu') # [[0., 0.], [0., 0.]] """ check_dtype(dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'zeros') if device is not None: if device not in ['cpu', 'gpu']: raise ValueError( "The value of 'device' in zeros_op must be cpu or gpu, but received %s." % (device)) with fluid.device_guard(device): return fill_constant(value=0.0, shape=shape, dtype=dtype, out=out) return fill_constant(value=0.0, shape=shape, dtype=dtype, out=out) def zeros_like(input, dtype=None, device=None, name=None): """ This function creates a zeros tensor which has identical shape and dtype with `input`. Args: input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be bool, float32, float64, int32, int64. dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64. The default value is None, the dtype is the same as input. device(str, optional): Which device to run the operator. The :attr:`device` must be None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in the paddle program. Default value is None. name(str, optional): The name of output variable, normally there is no need for user to set this this property. Default value is None, the framework set the name of output variable. Returns: out(Variable): The tensor variable storing the output. Examples: .. code-block:: python import paddle import paddle.fluid as fluid x = fluid.data(name='x', dtype='float32', shape=[3]) data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0] data1 = paddle.ones_like(input=x, device="gpu") #data1=[1.0, 1.0. 1.0] """ helper = LayerHelper("zeros_like", **locals()) attrs = {"value": 0.0} var_dtype = None if dtype is not None: check_dtype(dtype, 'create data type', ['bool', 'float32', 'float64', 'int32', 'int64'], 'zeros_like') var_dtype = convert_np_dtype_to_dtype_(dtype) attrs["dtype"] = var_dtype else: var_dtype = input.dtype out = helper.create_variable_for_type_inference(dtype=var_dtype) if device is not None: if device not in ['cpu', 'gpu']: raise ValueError( "The value of 'device' in zeros_op must be cpu or gpu, but received %s." % (device)) with fluid.device_guard(device): helper.append_op( type='fill_any_like', inputs={'X': [input]}, attrs=attrs, outputs={'Out': [out]}) return out helper.append_op( type='fill_any_like', inputs={'X': [input]}, attrs=attrs, outputs={'Out': [out]}) out.stop_gradient = True return out def eye(num_rows, num_columns=None, out=None, dtype='float32', stop_gradient=True, name=None): """ **eye** This function constructs an identity tensor. Args: num_rows(int): the number of rows in each batch tensor. num_columns(int, optional): the number of columns in each batch tensor. If None, default: num_rows. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. dtype(string, optional): The data type of the returned tensor. It should be int32, int64, float16, float32, float64. stop_gradient(bool, optional): Whether stop calculating gradients. Default:True. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns]. Examples: .. code-block:: python import paddle data = paddle.eye(3, dtype='int32') # [[1, 0, 0] # [0, 1, 0] # [0, 0, 1]] data = paddle.eye(2, 3, dtype='int32') # [[1, 0, 0] # [0, 1, 0]] """ helper = LayerHelper("eye", **locals()) if not isinstance(num_rows, int) or num_rows < 0: raise TypeError("num_rows should be a non-negative int") if num_columns is not None: if not isinstance(num_columns, int) or num_columns < 0: raise TypeError("num_columns should be a non-negative int") else: num_columns = num_rows if out is None: out = helper.create_variable_for_type_inference(dtype=dtype) c_dtype = convert_np_dtype_to_dtype_(dtype) helper.append_op( type='eye', inputs={}, outputs={'Out': [out]}, attrs={ 'num_rows': num_rows, 'num_columns': num_columns, 'dtype': c_dtype }, stop_gradient=True) out.stop_gradient = stop_gradient return out def full(shape, fill_value, out=None, dtype=None, device=None, stop_gradient=True, name=None): """ This Op return a Tensor with the `fill_value` which size is same as `shape` Args: shape(list|tuple|Variable): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``shape`` is an Variable, it should be an 1-D Tensor . fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data type of created tensor is `float32` device(str, optional): On which device to run this Op. The :attr:`device` must be None, 'cpu' or 'gpu'. If :attr:`device` is None, the device that the user set in the paddle program will be chosen. Default value is None. stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable, default value is True. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: Tensor which is created according to shape and dtype. Raises: TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64. TypeError: The `out` must be a Variable. TypeError: The `shape` must be one of Variable, list tuple. Examples: .. code-block:: python import paddle import paddle.fluid as fluid data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') # data1=[[0],[0]] data2 = paddle.full(shape=[2,1], fill_value=5, dtype='int64', device='gpu') # data2=[[5],[5]] # attr shape is a list which contains Variable Tensor. positive_2 = fluid.layers.fill_constant([1], "int32", 2) data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # data3=[1.5, 1.5] # attr shape is an Variable Tensor. shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2] data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) # data4=[[True,True],[True,True]] # attr value is an Variable Tensor. val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0] data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32') #data5=[[2.0],[2.0]] """ helper = LayerHelper("full", **locals()) if dtype is None: dtype = 'float32' check_dtype(dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'full') check_type(shape, 'shape', (Variable, list, tuple), 'full') if out is not None: check_type(shape, 'out', (Variable), 'full') if out is None: out = helper.create_variable_for_type_inference(dtype=dtype) out.stop_gradient = stop_gradient with device_guard(device): out = fill_constant(shape=shape, dtype=dtype, value=fill_value, out=out) return out def arange(start, end, step=1, dtype=None, name=None): """ Return evenly spaced values within a given interval. Values are generated within the half-open interval [start, stop) (in other words, the interval including start but excluding stop). Parameters: start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value. when start is Variable, it is a 1-D Tensor with shape [1]. end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this value, except in some cases where step is not an integer and floating point round-off affects the length of out. When end is Variable, it is a 1-D Tensor with shape [1]. step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the distance between two adjacent values, out[i+1] - out[i]. dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64. Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype. Return type: Variable examples: .. code-block:: python import paddle # expected out put: [0, 2, 4, 6, 8] data = paddle.arange(0, 10, 2, 'int32') #dygraph mode import paddle import paddle.fluid as fluid with fluid.dygraph.guard(): x = paddle.arange(0, 6, 2) # x: [0, 2, 4] # x dtype: float32 """ helper = LayerHelper("range", **locals()) if dtype is None: dtype = 'float32' check_dtype(dtype, 'create data type', ['float32', 'float64', 'int32', 'int64'], 'range') dtype = convert_dtype(dtype) if not isinstance(start, Variable): start = fill_constant([1], dtype, start) if not isinstance(end, Variable): end = fill_constant([1], dtype, end) if not isinstance(step, Variable): step = fill_constant([1], dtype, step) out = helper.create_variable_for_type_inference(dtype=start.dtype) helper.append_op( type='range', inputs={'Start': start, 'End': end, 'Step': step}, outputs={'Out': [out]}) out.stop_gradient = True return out def _tril_triu_op(helper): """Base op of tril_op and triu_op """ op_type = helper.layer_type x = helper.kwargs.get('input', None) assert x is not None, 'x cannot be None in {}'.format(op_type) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type) if len(x.shape) < 2: raise ValueError("input shape in {} must be at least 2-D".format( op_type)) diagonal = helper.kwargs.get('diagonal', 0) if not isinstance(diagonal, (int, )): raise TypeError("diagonal in {} must be a python Int".format(op_type)) name = helper.kwargs.get('name', None) if name is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) helper.append_op( type="tril_triu", inputs={"X": x}, attrs={ "diagonal": diagonal, "lower": True if op_type == 'tril' else False, }, outputs={"Out": out}, ) return out def tril(input, diagonal=0, name=None): """ This op returns the lower triangular part of a matrix (2-D tensor) or batch of matrices :attr:`input`, the other elements of the result tensor are set to 0. The lower triangular part of the matrix is defined as the elements on and below the diagonal. Args: input (Variable): The input variable which is a Tensor. Support data types: ``float64``, ``float32``, ``int32``, ``int64``. diagonal (int, optional): The diagonal to consider, default value is 0. If :attr:`diagonal` = 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor, it's data type is the same as input's Tensor. Raises: TypeError: diagonal is not a int type. ValueError: dimension of :attr:`input` is less than 2. Examples: .. code-block:: python import numpy as np import paddle.tensor as tensor import paddle.fluid as fluid data = np.arange(1, 13, dtype="int64").reshape(3,-1) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) x = fluid.data(shape=(-1, 4), dtype='int64', name='x') exe = fluid.Executor(fluid.CPUPlace()) # example 1, default diagonal tril = tensor.tril(x) tril_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[tril], return_numpy=True) # array([[ 1, 0, 0, 0], # [ 5, 6, 0, 0], # [ 9, 10, 11, 0]]) # example 2, positive diagonal value tril = tensor.tril(x, diagonal=2) tril_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[tril], return_numpy=True) # array([[ 1, 2, 3, 0], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) # example 3, negative diagonal value tril = tensor.tril(x, diagonal=-1) tril_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[tril], return_numpy=True) # array([[ 0, 0, 0, 0], # [ 5, 0, 0, 0], # [ 9, 10, 0, 0]]) """ if in_dygraph_mode(): op = getattr(core.ops, 'tril_triu') return op(input, 'diagonal', diagonal, "lower", True) return _tril_triu_op(LayerHelper('tril', **locals())) def triu(input, diagonal=0, name=None): """ This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices :attr:`input`, the other elements of the result tensor are set to 0. The upper triangular part of the matrix is defined as the elements on and above the diagonal. Args: input (Variable): The input variable which is a Tensor. Support data types: ``float64``, ``float32``, ``int32``, ``int64``. diagonal (int, optional): The diagonal to consider, default value is 0. If :attr:`diagonal` = 0, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor, it's data type is the same as input's Tensor. Raises: TypeError: diagonal is not a int type. ValueError: dimension of :attr:`input` is less than 2. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid import paddle.tensor as tensor data = np.arange(1, 13, dtype="int64").reshape(3,-1) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) x = fluid.data(shape=(-1, 4), dtype='int64', name='x') exe = fluid.Executor(fluid.CPUPlace()) # example 1, default diagonal triu = tensor.triu(x) triu_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[triu], return_numpy=True) # array([[ 1, 2, 3, 4], # [ 0, 6, 7, 8], # [ 0, 0, 11, 12]]) # example 2, positive diagonal value triu = tensor.triu(x, diagonal=2) triu_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[triu], return_numpy=True) # array([[0, 0, 3, 4], # [0, 0, 0, 8], # [0, 0, 0, 0]]) # example 3, negative diagonal value triu = tensor.triu(x, diagonal=-1) triu_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[triu], return_numpy=True) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 0, 10, 11, 12]]) """ if in_dygraph_mode(): op = getattr(core.ops, 'tril_triu') return op(input, 'diagonal', diagonal, "lower", False) return _tril_triu_op(LayerHelper('triu', **locals())) def meshgrid(input, name=None): """ This op takes a list of N tensors as input, each of which is 1-dimensional vector, and creates N-dimensional grids. Args: input(Variable) : tensors (list of tensor): the shapes of input k tensors are (N1,), (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk) Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np x = fluid.data(name='x', shape=[100], dtype='int32') y = fluid.data(name='y', shape=[200], dtype='int32') input_1 = np.random.randint(0, 100, [100, ]).astype('int32') input_2 = np.random.randint(0, 100, [200, ]).astype('int32') exe = fluid.Executor(place=fluid.CPUPlace()) grid_x, grid_y = paddle.tensor.meshgrid([x, y]) res_1, res_2 = exe.run(fluid.default_main_program(), feed={'x': input_1, 'y': input_2}, fetch_list=[grid_x, grid_y]) #the shape of res_1 is (100, 200) #the shape of res_2 is (100, 200) .. code-block:: python #example 2: in dygraph mode import paddle import paddle.fluid as fluid import numpy as np input_3 = np.random.randint(0, 100, [100, ]).astype('int32') input_4 = np.random.randint(0, 100, [200, ]).astype('int32') with fluid.dygraph.guard(): tensor_3 = fluid.dygraph.to_variable(input_3) tensor_4 = fluid.dygraph.to_variable(input_4) grid_x, grid_y = paddle.tensor.meshgrid([tensor_3, tensor_4]) #the shape of grid_x is (100, 200) #the shape of grid_y is (100, 200) """ if in_dygraph_mode(): num = len(input) out = core.ops.meshgrid(input, num) return out helper = LayerHelper('meshgrid', **locals()) if not isinstance(input, list): raise TypeError("The type of input in meshgrid should be list.") for id, input_ in enumerate(input): check_dtype(input_.dtype, 'create data type', ['float16', 'float32', 'float64', 'int32', 'int64'], 'meshgrid') num = len(input) out = [ helper.create_variable_for_type_inference(dtype=input[i].dtype) for i in range(num) ] helper.append_op(type='meshgrid', inputs={'X': input}, outputs={'Out': out}) return out