# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function # import all class inside framework into fluid module from . import framework from .framework import * # import all class inside executor into fluid module from . import executor from .executor import * from . import async_executor from .async_executor import * from . import trainer from . import inferencer from . import io from . import evaluator from . import initializer from . import layers from . import contrib from . import nets from . import optimizer from . import backward from . import regularizer from . import average from . import metrics from . import transpiler from .param_attr import ParamAttr, WeightNormParamAttr from .data_feeder import DataFeeder from .core import LoDTensor, LoDTensorArray, CPUPlace, CUDAPlace, CUDAPinnedPlace, Scope from .transpiler import DistributeTranspiler, \ memory_optimize, release_memory, DistributeTranspilerConfig from .lod_tensor import create_lod_tensor, create_random_int_lodtensor from . import clip from . import profiler from . import unique_name from . import recordio_writer from . import parallel_executor from .parallel_executor import * from paddle.fluid.layers.math_op_patch import monkey_patch_variable Tensor = LoDTensor __all__ = framework.__all__ + executor.__all__ + \ trainer.__all__ + inferencer.__all__ + transpiler.__all__ + \ parallel_executor.__all__ + lod_tensor.__all__ + \ async_executor.__all__ + [ 'io', 'initializer', 'layers', 'contrib', 'transpiler', 'nets', 'optimizer', 'learning_rate_decay', 'backward', 'regularizer', 'LoDTensor', 'LoDTensorArray', 'CPUPlace', 'CUDAPlace', 'CUDAPinnedPlace', 'Tensor', 'ParamAttr', 'WeightNormParamAttr', 'DataFeeder', 'clip', 'profiler', 'unique_name', 'recordio_writer', 'Scope', ] def __bootstrap__(): """ Enable reading gflags from environment variables. Returns: None """ import sys import os from . import core in_test = 'unittest' in sys.modules try: num_threads = int(os.getenv('OMP_NUM_THREADS', '1')) except ValueError: num_threads = 1 if num_threads > 1: print( 'WARNING: OMP_NUM_THREADS set to {0}, not 1. The computation ' 'speed will not be optimized if you use data parallel. It will ' 'fail if this PaddlePaddle binary is compiled with OpenBlas since' ' OpenBlas does not support multi-threads.'.format(num_threads), file=sys.stderr) print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr) os.environ['OMP_NUM_THREADS'] = str(num_threads) read_env_flags = [ 'use_pinned_memory', 'check_nan_inf', 'benchmark', 'warpctc_dir', 'eager_delete_scope', 'use_mkldnn', 'initial_cpu_memory_in_mb', 'init_allocated_mem', 'free_idle_memory', 'paddle_num_threads', 'dist_threadpool_size', 'cpu_deterministic', 'eager_delete_tensor_gb', 'reader_queue_speed_test_mode' ] if core.is_compiled_with_dist(): read_env_flags.append('rpc_deadline') read_env_flags.append('rpc_server_profile_path') read_env_flags.append('enable_rpc_profiler') read_env_flags.append('rpc_send_thread_num') read_env_flags.append('rpc_get_thread_num') read_env_flags.append('rpc_prefetch_thread_num') if core.is_compiled_with_cuda(): read_env_flags += [ 'fraction_of_gpu_memory_to_use', 'cudnn_deterministic' ] core.init_gflags([sys.argv[0]] + ["--tryfromenv=" + ",".join(read_env_flags)]) core.init_glog(sys.argv[0]) # don't init_p2p when in unittest to save time. core.init_devices(not in_test) # TODO(panyx0718): Avoid doing complex initialization logic in __init__.py. # Consider paddle.init(args) or paddle.main(args) monkey_patch_variable() __bootstrap__()