// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/platform/device/gpu/gpu_launch_config.h" #include "paddle/fluid/platform/device/gpu/gpu_primitives.h" #include "paddle/phi/backends/gpu/gpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_meta.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/nanmedian_grad_kernel.h" namespace phi { using paddle::platform::PADDLE_CUDA_NUM_THREADS; inline int GET_BLOCKS(const int N) { return (N + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS; } template __global__ void KernelNanmedianGrad(const T* x_ptr, const int64_t* medians_ptr, const T* out_grad_ptr, T* x_grad_ptr, int64_t stride, int64_t pre_dim, T div_factor) { CUDA_KERNEL_LOOP(index, pre_dim) { int64_t offset = index * stride; if (medians_ptr[2 * index] >= 0) { if (medians_ptr[2 * index] == medians_ptr[2 * index + 1]) { x_grad_ptr[offset + medians_ptr[2 * index]] = out_grad_ptr[index]; } else { x_grad_ptr[offset + medians_ptr[2 * index]] = out_grad_ptr[index] / div_factor; x_grad_ptr[offset + medians_ptr[2 * index + 1]] = out_grad_ptr[index] / div_factor; } } } } template void CalcMedianGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& median_index, const DenseTensor& out_grad, DenseTensor* x_grad, T* x_grad_ptr) { phi::funcs::SetConstant set_zero; set_zero(dev_ctx, x_grad, static_cast(0)); auto stream = dev_ctx.stream(); const T* x_ptr = x.data(); const int64_t* m_ptr = median_index.data(); const T* out_grad_ptr = out_grad.data(); int64_t numel = x.numel(); auto x_dim = x.dims(); int64_t x_rank = x_dim.size(); int64_t stride = x_dim[x_rank - 1]; int64_t pre_dim = numel / stride; T div_factor = static_cast(2.0); KernelNanmedianGrad< T><<>>( x_ptr, m_ptr, out_grad_ptr, x_grad_ptr, stride, pre_dim, div_factor); } template void BaseMedianGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& median_index, const DenseTensor& out_grad, const IntArray& axes, DenseTensor* x_grad) { auto rank = x.dims().size(); T* x_grad_ptr = dev_ctx.template Alloc(x_grad); if (axes.size() && (rank > 1)) { DenseTensor tmp_x_grad(*x_grad); CalcMedianGradKernel( dev_ctx, x, median_index, out_grad, &tmp_x_grad, x_grad_ptr); PostprocessMedianGradKernel(dev_ctx, &tmp_x_grad, axes, x_grad); } else { CalcMedianGradKernel( dev_ctx, x, median_index, out_grad, x_grad, x_grad_ptr); } } template void NanmedianGradKernel(const Context& dev_ctx, const DenseTensor& input, const DenseTensor& median_index, const DenseTensor& out_grad, const IntArray& axes, bool keep_dim, DenseTensor* x_grad) { BaseMedianGradKernel( dev_ctx, input, median_index, out_grad, axes, x_grad); } } // namespace phi PD_REGISTER_KERNEL(nanmedian_grad, GPU, ALL_LAYOUT, phi::NanmedianGradKernel, float, double, int, int64_t, phi::dtype::float16) {}