# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division from __future__ import print_function import unittest import random import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.dygraph import Embedding, Linear, Layer from paddle.fluid.layers import BeamSearchDecoder from paddle import Model, set_device from paddle.static import InputSpec as Input from paddle.text import * class ModuleApiTest(unittest.TestCase): @classmethod def setUpClass(cls): cls._np_rand_state = np.random.get_state() cls._py_rand_state = random.getstate() cls._random_seed = 123 np.random.seed(cls._random_seed) random.seed(cls._random_seed) cls.model_cls = type(cls.__name__ + "Model", (Layer, ), { "__init__": cls.model_init_wrapper(cls.model_init), "forward": cls.model_forward }) @classmethod def tearDownClass(cls): np.random.set_state(cls._np_rand_state) random.setstate(cls._py_rand_state) @staticmethod def model_init_wrapper(func): def __impl__(self, *args, **kwargs): Layer.__init__(self) func(self, *args, **kwargs) return __impl__ @staticmethod def model_init(model, *args, **kwargs): raise NotImplementedError( "model_init acts as `Model.__init__`, thus must implement it") @staticmethod def model_forward(model, *args, **kwargs): return model.module(*args, **kwargs) def make_inputs(self): # TODO(guosheng): add default from `self.inputs` raise NotImplementedError( "model_inputs makes inputs for model, thus must implement it") def setUp(self): """ For the model which wraps the module to be tested: Set input data by `self.inputs` list Set init argument values by `self.attrs` list/dict Set model parameter values by `self.param_states` dict Set expected output data by `self.outputs` list We can create a model instance and run once with these. """ self.inputs = [] self.attrs = {} self.param_states = {} self.outputs = [] def _calc_output(self, place, mode="test", dygraph=True): if dygraph: fluid.enable_dygraph(place) else: fluid.disable_dygraph() gen = paddle.manual_seed(self._random_seed) gen._is_init_py = False paddle.framework.random._manual_program_seed(self._random_seed) scope = fluid.core.Scope() with fluid.scope_guard(scope): layer = self.model_cls(**self.attrs) if isinstance( self.attrs, dict) else self.model_cls(*self.attrs) model = Model(layer, inputs=self.make_inputs()) model.prepare() if self.param_states: model.load(self.param_states, optim_state=None) return model.test_batch(self.inputs) def check_output_with_place(self, place, mode="test"): dygraph_output = self._calc_output(place, mode, dygraph=True) stgraph_output = self._calc_output(place, mode, dygraph=False) expect_output = getattr(self, "outputs", None) for actual_t, expect_t in zip(dygraph_output, stgraph_output): self.assertTrue(np.allclose(actual_t, expect_t, rtol=1e-5, atol=0)) if expect_output: for actual_t, expect_t in zip(dygraph_output, expect_output): self.assertTrue( np.allclose( actual_t, expect_t, rtol=1e-5, atol=0)) def check_output(self): devices = ["CPU", "GPU"] if fluid.is_compiled_with_cuda() else ["CPU"] for device in devices: place = set_device(device) self.check_output_with_place(place) class TestBasicLSTM(ModuleApiTest): def setUp(self): # TODO(guosheng): Change to big size. Currently bigger hidden size for # LSTM would fail, the second static graph run might get diff output # with others. shape = (2, 4, 16) self.inputs = [np.random.random(shape).astype("float32")] self.outputs = None self.attrs = {"input_size": 16, "hidden_size": 16} self.param_states = {} @staticmethod def model_init(model, input_size, hidden_size): model.lstm = RNN(BasicLSTMCell( input_size, hidden_size, )) @staticmethod def model_forward(model, inputs): return model.lstm(inputs)[0] def make_inputs(self): inputs = [ Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"), ] return inputs def test_check_output(self): self.check_output() class TestBasicGRU(ModuleApiTest): def setUp(self): shape = (2, 4, 128) self.inputs = [np.random.random(shape).astype("float32")] self.outputs = None self.attrs = {"input_size": 128, "hidden_size": 128} self.param_states = {} @staticmethod def model_init(model, input_size, hidden_size): model.gru = RNN(BasicGRUCell(input_size, hidden_size)) @staticmethod def model_forward(model, inputs): return model.gru(inputs)[0] def make_inputs(self): inputs = [ Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"), ] return inputs def test_check_output(self): self.check_output() class TestBeamSearch(ModuleApiTest): def setUp(self): shape = (8, 32) self.inputs = [ np.random.random(shape).astype("float32"), np.random.random(shape).astype("float32") ] self.outputs = None self.attrs = { "vocab_size": 100, "embed_dim": 32, "hidden_size": 32, } self.param_states = {} @staticmethod def model_init(self, vocab_size, embed_dim, hidden_size, bos_id=0, eos_id=1, beam_size=4, max_step_num=20): embedder = Embedding(size=[vocab_size, embed_dim]) output_layer = Linear(hidden_size, vocab_size) cell = BasicLSTMCell(embed_dim, hidden_size) decoder = BeamSearchDecoder( cell, start_token=bos_id, end_token=eos_id, beam_size=beam_size, embedding_fn=embedder, output_fn=output_layer) self.beam_search_decoder = DynamicDecode( decoder, max_step_num=max_step_num, is_test=True) @staticmethod def model_forward(model, init_hidden, init_cell): return model.beam_search_decoder([init_hidden, init_cell])[0] def make_inputs(self): inputs = [ Input([None, self.inputs[0].shape[-1]], "float32", "init_hidden"), Input([None, self.inputs[1].shape[-1]], "float32", "init_cell"), ] return inputs def test_check_output(self): self.check_output() class TestTransformerEncoder(ModuleApiTest): def setUp(self): self.inputs = [ # encoder input: [batch_size, seq_len, hidden_size] np.random.random([2, 4, 512]).astype("float32"), # self attention bias: [batch_size, n_head, seq_len, seq_len] np.random.randint(0, 1, [2, 8, 4, 4]).astype("float32") * -1e9 ] self.outputs = None self.attrs = { "n_layer": 2, "n_head": 8, "d_key": 64, "d_value": 64, "d_model": 512, "d_inner_hid": 1024 } self.param_states = {} @staticmethod def model_init(model, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout=0.1, attention_dropout=0.1, relu_dropout=0.1, preprocess_cmd="n", postprocess_cmd="da", ffn_fc1_act="relu"): model.encoder = TransformerEncoder( n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd, ffn_fc1_act) @staticmethod def model_forward(model, enc_input, attn_bias): return model.encoder(enc_input, attn_bias) def make_inputs(self): inputs = [ Input([None, None, self.inputs[0].shape[-1]], "float32", "enc_input"), Input([None, self.inputs[1].shape[1], None, None], "float32", "attn_bias"), ] return inputs def test_check_output(self): self.check_output() class TestTransformerDecoder(TestTransformerEncoder): def setUp(self): self.inputs = [ # decoder input: [batch_size, seq_len, hidden_size] np.random.random([2, 4, 512]).astype("float32"), # encoder output: [batch_size, seq_len, hidden_size] np.random.random([2, 5, 512]).astype("float32"), # self attention bias: [batch_size, n_head, seq_len, seq_len] np.random.randint(0, 1, [2, 8, 4, 4]).astype("float32") * -1e9, # cross attention bias: [batch_size, n_head, seq_len, seq_len] np.random.randint(0, 1, [2, 8, 4, 5]).astype("float32") * -1e9 ] self.outputs = None self.attrs = { "n_layer": 2, "n_head": 8, "d_key": 64, "d_value": 64, "d_model": 512, "d_inner_hid": 1024 } self.param_states = {} @staticmethod def model_init(model, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout=0.1, attention_dropout=0.1, relu_dropout=0.1, preprocess_cmd="n", postprocess_cmd="da"): model.decoder = TransformerDecoder( n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd) @staticmethod def model_forward(model, dec_input, enc_output, self_attn_bias, cross_attn_bias, caches=None): return model.decoder(dec_input, enc_output, self_attn_bias, cross_attn_bias, caches) def make_inputs(self): inputs = [ Input([None, None, self.inputs[0].shape[-1]], "float32", "dec_input"), Input([None, None, self.inputs[0].shape[-1]], "float32", "enc_output"), Input([None, self.inputs[-1].shape[1], None, None], "float32", "self_attn_bias"), Input([None, self.inputs[-1].shape[1], None, None], "float32", "cross_attn_bias"), ] return inputs def test_check_output(self): self.check_output() class TestTransformerBeamSearchDecoder(ModuleApiTest): def setUp(self): self.inputs = [ # encoder output: [batch_size, seq_len, hidden_size] np.random.random([2, 5, 128]).astype("float32"), # cross attention bias: [batch_size, n_head, seq_len, seq_len] np.random.randint(0, 1, [2, 2, 1, 5]).astype("float32") * -1e9 ] self.outputs = None self.attrs = { "vocab_size": 100, "n_layer": 2, "n_head": 2, "d_key": 64, "d_value": 64, "d_model": 128, "d_inner_hid": 128 } self.param_states = {} @staticmethod def model_init(model, vocab_size, n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout=0.1, attention_dropout=0.1, relu_dropout=0.1, preprocess_cmd="n", postprocess_cmd="da", bos_id=0, eos_id=1, beam_size=4, max_step_num=20): model.beam_size = beam_size def embeder_init(self, size): Layer.__init__(self) self.embedder = Embedding(size) Embedder = type("Embedder", (Layer, ), { "__init__": embeder_init, "forward": lambda self, word, pos: self.embedder(word) }) embedder = Embedder(size=[vocab_size, d_model]) output_layer = Linear(d_model, vocab_size) model.decoder = TransformerDecoder( n_layer, n_head, d_key, d_value, d_model, d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout, preprocess_cmd, postprocess_cmd) transformer_cell = TransformerCell(model.decoder, embedder, output_layer) model.beam_search_decoder = DynamicDecode( TransformerBeamSearchDecoder( transformer_cell, bos_id, eos_id, beam_size, var_dim_in_state=2), max_step_num, is_test=True) @staticmethod def model_forward(model, enc_output, trg_src_attn_bias): caches = model.decoder.prepare_incremental_cache(enc_output) enc_output = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( enc_output, model.beam_size) trg_src_attn_bias = TransformerBeamSearchDecoder.tile_beam_merge_with_batch( trg_src_attn_bias, model.beam_size) static_caches = model.decoder.prepare_static_cache(enc_output) rs, _ = model.beam_search_decoder( inits=caches, enc_output=enc_output, trg_src_attn_bias=trg_src_attn_bias, static_caches=static_caches) return rs def make_inputs(self): inputs = [ Input([None, None, self.inputs[0].shape[-1]], "float32", "enc_output"), Input([None, self.inputs[1].shape[1], None, None], "float32", "trg_src_attn_bias"), ] return inputs def test_check_output(self): self.check_output() class TestSequenceTagging(ModuleApiTest): def setUp(self): self.inputs = [ np.random.randint(0, 100, (2, 8)).astype("int64"), np.random.randint(1, 8, (2)).astype("int64"), np.random.randint(0, 5, (2, 8)).astype("int64") ] self.outputs = None self.attrs = {"vocab_size": 100, "num_labels": 5} self.param_states = {} @staticmethod def model_init(model, vocab_size, num_labels, word_emb_dim=128, grnn_hidden_dim=128, emb_learning_rate=0.1, crf_learning_rate=0.1, bigru_num=2, init_bound=0.1): model.tagger = SequenceTagging(vocab_size, num_labels, word_emb_dim, grnn_hidden_dim, emb_learning_rate, crf_learning_rate, bigru_num, init_bound) @staticmethod def model_forward(model, word, lengths, target=None): return model.tagger(word, lengths, target) def make_inputs(self): inputs = [ Input([None, None], "int64", "word"), Input([None], "int64", "lengths"), Input([None, None], "int64", "target"), ] return inputs def test_check_output(self): self.check_output() class TestSequenceTaggingInfer(TestSequenceTagging): def setUp(self): super(TestSequenceTaggingInfer, self).setUp() self.inputs = self.inputs[:2] # remove target def make_inputs(self): inputs = super(TestSequenceTaggingInfer, self).make_inputs()[:2] # remove target return inputs class TestStackedRNN(ModuleApiTest): def setUp(self): shape = (2, 4, 16) self.inputs = [np.random.random(shape).astype("float32")] self.outputs = None self.attrs = {"input_size": 16, "hidden_size": 16, "num_layers": 2} self.param_states = {} @staticmethod def model_init(model, input_size, hidden_size, num_layers): cells = [ BasicLSTMCell(input_size, hidden_size), BasicLSTMCell(hidden_size, hidden_size) ] stacked_cell = StackedRNNCell(cells) model.lstm = RNN(stacked_cell) @staticmethod def model_forward(self, inputs): return self.lstm(inputs)[0] def make_inputs(self): inputs = [ Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"), ] return inputs def test_check_output(self): self.check_output() class TestLSTM(ModuleApiTest): def setUp(self): shape = (2, 4, 16) self.inputs = [np.random.random(shape).astype("float32")] self.outputs = None self.attrs = {"input_size": 16, "hidden_size": 16, "num_layers": 2} self.param_states = {} @staticmethod def model_init(model, input_size, hidden_size, num_layers): model.lstm = LSTM(input_size, hidden_size, num_layers=num_layers) @staticmethod def model_forward(model, inputs): return model.lstm(inputs)[0] def make_inputs(self): inputs = [ Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"), ] return inputs def test_check_output(self): self.check_output() class TestBiLSTM(ModuleApiTest): def setUp(self): shape = (2, 4, 16) self.inputs = [np.random.random(shape).astype("float32")] self.outputs = None self.attrs = {"input_size": 16, "hidden_size": 16, "num_layers": 2} self.param_states = {} @staticmethod def model_init(model, input_size, hidden_size, num_layers, merge_mode="concat", merge_each_layer=False): model.bilstm = BidirectionalLSTM( input_size, hidden_size, num_layers=num_layers, merge_mode=merge_mode, merge_each_layer=merge_each_layer) @staticmethod def model_forward(model, inputs): return model.bilstm(inputs)[0] def make_inputs(self): inputs = [ Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"), ] return inputs def test_check_output_merge0(self): self.check_output() def test_check_output_merge1(self): self.attrs["merge_each_layer"] = True self.check_output() class TestGRU(ModuleApiTest): def setUp(self): shape = (2, 4, 64) self.inputs = [np.random.random(shape).astype("float32")] self.outputs = None self.attrs = {"input_size": 64, "hidden_size": 128, "num_layers": 2} self.param_states = {} @staticmethod def model_init(model, input_size, hidden_size, num_layers): model.gru = GRU(input_size, hidden_size, num_layers=num_layers) @staticmethod def model_forward(model, inputs): return model.gru(inputs)[0] def make_inputs(self): inputs = [ Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"), ] return inputs def test_check_output(self): self.check_output() class TestBiGRU(ModuleApiTest): def setUp(self): shape = (2, 4, 64) self.inputs = [np.random.random(shape).astype("float32")] self.outputs = None self.attrs = {"input_size": 64, "hidden_size": 128, "num_layers": 2} self.param_states = {} @staticmethod def model_init(model, input_size, hidden_size, num_layers, merge_mode="concat", merge_each_layer=False): model.bigru = BidirectionalGRU( input_size, hidden_size, num_layers=num_layers, merge_mode=merge_mode, merge_each_layer=merge_each_layer) @staticmethod def model_forward(model, inputs): return model.bigru(inputs)[0] def make_inputs(self): inputs = [ Input([None, None, self.inputs[-1].shape[-1]], "float32", "input"), ] return inputs def test_check_output_merge0(self): self.check_output() def test_check_output_merge1(self): self.attrs["merge_each_layer"] = True self.check_output() class TestCNNEncoder(ModuleApiTest): def setUp(self): shape = (2, 32, 8) # [N, C, H] self.inputs = [np.random.random(shape).astype("float32")] self.outputs = None self.attrs = {"num_channels": 32, "num_filters": 64, "num_layers": 2} self.param_states = {} @staticmethod def model_init(model, num_channels, num_filters, num_layers): model.cnn_encoder = CNNEncoder( num_layers=2, num_channels=num_channels, num_filters=num_filters, filter_size=[2, 3], pool_size=[7, 6]) @staticmethod def model_forward(model, inputs): return model.cnn_encoder(inputs) def make_inputs(self): inputs = [ Input([None, self.inputs[-1].shape[1], None], "float32", "input"), ] return inputs def test_check_output(self): self.check_output() if __name__ == '__main__': unittest.main()