/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/clip_by_norm_op.h" #include "paddle/fluid/operators/reduce_ops/reduce_op.cu.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template <> class ClipByNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto max_norm = context.Attr("max_norm"); auto in_var = context.InputVar("X"); auto& dev_ctx = context.template device_context(); Tensor* output = nullptr; const Tensor* input = nullptr; if (in_var->IsType()) { input = context.Input("X"); output = context.Output("Out"); output->mutable_data(context.GetPlace()); } else if (in_var->IsType()) { auto* x = context.Input("X"); // merge ids in selected rows first math::scatter::MergeAdd merge_func; pten::SelectedRows* merged_input = const_cast(context.scope()) .Var() ->GetMutable(); merge_func(context.template device_context(), *x, merged_input); input = &(merged_input->value()); pten::SelectedRows* output_selected_rows = context.Output("Out"); output_selected_rows->set_rows(merged_input->rows()); output_selected_rows->set_height(merged_input->height()); output = output_selected_rows->mutable_value(); output->Resize(merged_input->value().dims()); output->mutable_data(context.GetPlace()); } else { PADDLE_THROW(platform::errors::InvalidArgument( "Invalid input variable type, only support LodTensor and " "SelectedRows types, but got type is %s.", framework::ToTypeName(in_var->Type()))); } PADDLE_ENFORCE_NOT_NULL(input, platform::errors::InvalidArgument( "Input(X) of ClipByNormOp should not be null. " "Please check if it is created correctly.")); std::vector reduce_dims; reduce_dims.resize(input->dims().size()); for (int i = 0; i < reduce_dims.size(); ++i) { reduce_dims[i] = i; } Tensor tmp = context.AllocateTmpTensor( {1}, dev_ctx); TensorReduceImpl>( dev_ctx, *input, &tmp, kps::SquareFunctor(), reduce_dims, dev_ctx.stream()); auto tmp_eigen = EigenVector::Flatten(tmp); auto x_norm = tmp_eigen.sqrt(); auto x = EigenVector::Flatten(*input); auto out = EigenVector::Flatten(*output); auto& place = *context.template device_context() .eigen_device(); auto temp = (x_norm <= max_norm).template cast(); auto epsilon = ((x_norm <= static_cast(1e-30)).all().template cast()) * static_cast(1e-6); auto scaling = (temp + (static_cast(1) - temp) * max_norm / (x_norm + epsilon)) .template cast(); Eigen::array one_dim{{1}}; Eigen::DSizes m_dsize(input->numel()); out.device(place) = x * scaling.reshape(one_dim).broadcast(m_dsize); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_CUDA_KERNEL( clip_by_norm, ops::ClipByNormKernel, ops::ClipByNormKernel);