# 如何写新的Operator - [概念简介](#概念简介) - [实现C++类](#实现C++类) - [定义ProtoMaker类](#定义ProtoMaker类) - [定义Operator类](#定义Operator类) - [定义`OpKernel`类](#定义`OpKernel`类) - [注册类](#注册类) - [编译](#编译) - [绑定Python](#绑定Python) - [实现单元测试](#实现单元测试) ## 概念简介 简单介绍需要用到基类,详细介绍请参考设计文档。 - `framework::OperatorBase`: Operator(简写,Op)基类。 - `framework::OpKernel`: Op计算函数的基类,称作Kernel。 - `framework::OperatorWithKernel`:继承自OperatorBase,Op有计算函数,称作有Kernel。 - `class OpProtoAndCheckerMaker`:描述该Op的输入、输出、属性、注释,主要用于Python API接口生成 依据是否包含kernel,将Op分为两种:包含Kernel的Op和不包含kernel的Op,前者Op的定义继承自`OperatorBase`,后者继承自`OperatorWithKernel`。本教程主要介绍带Kernel的Op如何写,简单总结如下: Forward Op需要包含: - OpProtoMake定义 - Op定义 - Kernel实现 与之对应的Backward Op包含: - Op定义 - Kernel实现 下面以矩阵乘操作,即[MulOp](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc)为例来介绍如何写带Kernel的Operator。 ## 实现C++类 ### 1. 定义ProtoMaker类 矩阵乘的公式:$$Out = X * Y$$ ,可见该计算由两个输入,一个输出组成。首先定义`ProtoMaker`来描述该Op的输入、输出及注释: ``` class MulOpMaker : public framework::OpProtoAndCheckerMaker { public: MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The first input of mul op"); AddInput("Y", "The second input of mul op"); AddOutput("Out", "The output of mul op"); AddComment(R"DOC( Two Element Mul Operator. The equation is: Out = X * Y )DOC"); } }; ``` [`MulOpMaker`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L43)继承自`framework::OpProtoAndCheckerMaker`,构造函数包括2个: - `framework::OpProto` : 前者存储Op的输入输出和参数属性,将用于Python API接口的生成。 - `framework::OpAttrChecker` :后者用于检查参数属性的合法性。 构造函数里通过`AddInput`添加输入参数,通过`AddOutput`添加输出参数,通过`AddComment`添加该Op的注释,这些函数会将对应内容添加到`OpProto`中。 在`MulOp`中添加两个输入`X`和`Y`,添加了一个输出`Out`,并解释了各自含义,该命名尽可能的规范。 再举个[`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)的例子: ```C++ template class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { public: ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of scale operator.").NotInGradient(); AddOutput("Out", "The output tensor of scale operator.").NotInGradient(); AddComment(R"DOC(Scale operator The equation is: Out = scale*X )DOC"); AddAttr("scale", "scale of scale operator.").SetDefault(1.0); } }; ``` 在这个例子里,两处不同: - `AddInput("X","...").NotInGradient()` : 表示`X`这个输入不参与`ScaleOp`对应的梯度Op计算之中。 - `AddAttr("scale", "...").SetDefault(1.0);` : 增加`scale`系数,作为参数属性,并且设置默认值为1.0。 ### 2. 定义Operator类 ```C++ class MulOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; protected: void InferShape(const framework::InferShapeContext &ctx) const override { auto dim0 = ctx.Input("X")->dims(); auto dim1 = ctx.Input("Y")->dims(); PADDLE_ENFORCE_EQ(dim0.size(), 2, "input X(%s) should be a tensor with 2 dims, a matrix", ctx.op_.Input("X")); PADDLE_ENFORCE_EQ(dim1.size(), 2, "input Y(%s) should be a tensor with 2 dims, a matrix", ctx.op_.Input("Y")); PADDLE_ENFORCE_EQ( dim0[1], dim1[0], "First matrix's width must be equal with second matrix's height."); ctx.Output("Out")->Resize({dim0[0], dim1[1]}); } }; ``` [`MulOp`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/mul_op.cc#L22)继承自`OperatorWithKernel`。`public`成员: ```C++ using framework::OperatorWithKernel::OperatorWithKernel; ``` 这句表示使用基类`OperatorWithKernel`的构造函数,也可写成: ```C++ MulOp(const std::string &type, const framework::VariableNameMap &inputs, const framework::VariableNameMap &outputs, const framework::AttributeMap &attrs) : OperatorWithKernel(type, inputs, outputs, attrs) {} ``` 还需要重写`InferShape`接口。`InferShape`为const函数,不能修改Op的成员变量,参数为`const framework::InferShapeContext &ctx`,通过该参数可获取到输入输出以及属性。它的功能是: - 1). 做检查, 尽早报错:检查输入数据维度、类型等是否合法 - 2). 设置输出Tensor的形状 通常`OpProtoMaker`和`Op`类的定义写在`.cc`文件中,和要讲到的注册函数一起放在`.cc`中 ### 3. 定义`OpKernel`类 ```C++ template class MulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* X = context.Input("X"); auto* Y = context.Input("Y"); auto* Z = context.Output("Out"); Z->mutable_data(context.GetPlace()); auto* device_context = const_cast(context.device_context_); math::matmul(*X, false, *Y, false, 1, Z, 0, device_context); } }; ``` `MulKernel`继承自`framework::OpKernel`,带有模板参数: - `typename Place`: 表示设备类型,不同设备(CPU、GPU)共享同一个Kernel时,需加该模板参数,不共享则不加,一个不共享的例子是[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 - `typename T` : 表示数据类型,如`float`, `double`等。 `MulKernel`需要重写`Compute`接口,该接口参数为`const framework::ExecutionContext& context`, `ExecutionContext`相比`InferShapeContext`增加了设备类型,同样可获取到输入输出和属性参数,`Compute`函数里写具体实现时。 注意,不同设备(CPU、GPU)共享一个Op定义,是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。`MulOp`的CPU、GPU实现共享同一个`Kernel`,`OpKernel`不共享的例子可以参考[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 到此前向Op实现完成,需要在`.cc`文件中注册该op和kernel。反向Op类的定义和Kernel定义与前向Op类似,这里不再重复。但注意,反向Op没有`ProtoMaker`。 ### 4. 注册类 在`.cc`文件中注册前向、反向Op类,注册CPU Kernel。 ```C++ namespace ops = paddle::operators; REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad); REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); REGISTER_OP_CPU_KERNEL(mul_grad, ops::MulGradKernel); ``` - `REGISTER_OP` : 注册`ops::MulOp`类,类型名为`mul`,该类的`ProtoMaker`为`ops::MulOpMaker`,注册`ops::MulOpGrad`,类型名为`mul_grad`, - `REGISTER_OP_WITHOUT_GRADIENT` : 用于注册没有反向的Op。 - `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulKernel`类。 在 `.cu`文件中注册GPU Kernel。 ``` namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); REGISTER_OP_GPU_KERNEL(mul_grad, ops::MulGradKernel); ``` ### 5. 编译 在[paddle/operators/CMakeLists.txt](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/CMakeLists.txt)文件中添加编译。 ``` op_library(mul_op SRCS mul_op.cc mul_op.cu DEPS math_function) ``` 下面命令可以编译: ``` make mul_op ``` ## 绑定Python - 绑定Python 在 [`paddle/pybind/pybind.cc `](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/pybind.cc)文件中添加该类: ``` USE_OP(mul); ``` 如果只实现了CPU版本,则使用`USE_CPU_ONLY_OP`: ``` USE_CPU_ONLY_OP(gather); ``` 使用`USE_OP`告知编译器需要链接该Op的目标文件,具体解释参考[代码注释](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h#L81)。 - 生成库 在 [`paddle/pybind/CMakeLists.txt`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/pybind/CMakeLists.txt)文件添加类到`DEPS`中。 ``` if(WITH_PYTHON) cc_library(paddle_pybind SHARED SRCS pybind.cc DEPS pybind python backward mul_op minus_op) endif(WITH_PYTHON) ``` ## 实现单元测试 单测包括对比前向Op不同设备(CPU、GPU)的实现、对比反向OP不同设备(CPU、GPU)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单测](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py)。 - 前向Op单测 前向Op单测继承自`unittest.TestCase`,并定义元类`__metaclass__ = OpTestMeta`,具体单测流程在`OpTestMeta`里完成。需在`setUp`函数定义输入输出和属性参数,以及Python对比的输出值。 ``` import unittest import numpy as np from gradient_checker import GradientChecker, create_op from op_test_util import OpTestMeta class TestMulOp(unittest.TestCase): __metaclass__ = OpTestMeta def setUp(self): self.type = "mul" self.inputs = { 'X': np.random.random((32, 84)).astype("float32"), 'Y': np.random.random((84, 100)).astype("float32") } self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} ``` 首先需要`import`必要的包,下面详细解释其他值: - `self.type = "mul" ` : 定义类型,和注册的类型一致。 - `self.inputs` : 定义输入,类型为Numpy.array,并初始化。 - `self.outputs` : 定义输出,并得到Python结算结果。 - 反向Op单测 反向Op单测继承自`GradientChecker`,而`GradientChecker`集成自`unittest.TestCase`,所以反向单测函数需要`test_`开头。 ``` class MulGradOpTest(GradientChecker): def test_mul(self): op = create_op("mul") inputs = { 'X': np.random.random((32, 84)).astype("float32"), 'Y': np.random.random((84, 100)).astype("float32") } self.compare_grad(op, inputs) # mul op will enlarge the relative error self.check_grad( op, inputs, set(["X", "Y"]), "Out", max_relative_error=0.5) ``` - 调用`create_op("mul")`创建反向Op对应的前向Op。 - 定义输入`inputs`。 - 调用`compare_grad`函数对比CPU、GPU计算结果。 - 调用`check_grad`检查梯度稳定性。