# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle from paddle.fluid import core, framework from paddle.fluid.framework import Program, program_guard import paddle.fluid.layers as layers import numpy as np paddle.enable_static() # test the compatibility of new executor: run old # and new executor twice and check the result. # please override the _get_feeds() and build_prgram() class TestCompatibility(unittest.TestCase): def setUp(self): self.place = paddle.CUDAPlace( 0) if core.is_compiled_with_cuda() else paddle.CPUPlace() self.iter_run = 4 def _get_feed(self): """ return the feeds """ return None def build_program(self): def true_func(): return layers.fill_constant(shape=[1, 2], dtype='int32', value=1), layers.fill_constant( shape=[2, 3], dtype='bool', value=True) def false_func(): return layers.fill_constant(shape=[3, 4], dtype='float32', value=3), layers.fill_constant( shape=[4, 5], dtype='int64', value=2) main_program = Program() startup_program = Program() with program_guard(main_program, startup_program): x = layers.fill_constant(shape=[1], dtype='float32', value=0.1) y = layers.fill_constant(shape=[1], dtype='float32', value=0.23) pred = layers.less_than(x, y) out = layers.cond(pred, true_func, false_func) # out is a tuple containing 2 tensors return main_program, startup_program, out def _run(self, feed): paddle.seed(2020) main_program, startup_program, fetch_vars = self.build_program() exe = paddle.static.Executor(self.place) exe.run(startup_program) ret = [] for i in range(self.iter_run): ret.append(exe.run(main_program, feed=feed, fetch_list=fetch_vars)) return ret def run_raw_executor(self, feed): with framework._enable_standalone_executor(False): out = self._run(feed) return out def run_new_executor(self, feed): with framework._enable_standalone_executor(True): out = self._run(feed) return out def test_with_feed(self): feed = self._get_feed() res = self.run_new_executor(feed) gt = self.run_raw_executor(feed) for x, y in zip(gt, res): if isinstance(x, list): for tx, ty in zip(x, y): np.testing.assert_array_equal(tx, ty) elif isinstance(x, np.ndarray): np.testing.assert_array_equal(tx, ty) else: raise Exception("Not Implement!") class TestWhile(TestCompatibility): def _get_feed(self): """ return the feeds """ return None def build_program(self): def cond(i, ten): return i < ten def body(i, ten): i = i + 1 return [i, ten] main_program = paddle.static.default_main_program() startup_program = paddle.static.default_startup_program() with paddle.static.program_guard(main_program, startup_program): i = paddle.full(shape=[1], fill_value=0, dtype='int64') # loop counter ten = paddle.full(shape=[1], fill_value=10, dtype='int64') # loop length i, ten = paddle.static.nn.while_loop(cond, body, [i, ten]) exe = paddle.static.Executor(paddle.CPUPlace()) return main_program, startup_program, i if __name__ == "__main__": unittest.main()