/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/operators/elementwise_op_function.h" namespace paddle { namespace operators { template struct MinFunctor { inline HOSTDEVICE T operator()(T a, T b) const { return a < b ? a : b; } }; template class ElementwiseMinKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { using Tensor = framework::Tensor; auto* x = ctx.Input("X"); auto* y = ctx.Input("Y"); auto* z = ctx.Output("Out"); z->mutable_data(ctx.GetPlace()); TransformFunctor, T, DeviceContext> functor( x, y, z, ctx.template device_context(), MinFunctor()); auto x_dims = x->dims(); auto y_dims = y->dims(); PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), "Rank of first input must >= rank of second input."); if (x_dims == y_dims) { functor.Run(); return; } int axis = ctx.Attr("axis"); axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), "Axis should be in range [0, x_dims)"); int pre, n, post; get_mid_dims(x_dims, y_dims, axis, pre, n, post); if (post == 1) { functor.RunRowWise(n, pre); return; } else { functor.RunMidWise(n, pre, post); return; } } }; template struct ElementwiseMinGradFunctor { template void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz) { auto x_e = framework::EigenVector::Flatten(*x); auto y_e = framework::EigenVector::Flatten(*y); auto dz_e = framework::EigenVector::Flatten(*dz); if (dx) { auto dx_e = framework::EigenVector::Flatten(*dx); dx_e.device(d) = (x_e < y_e).template cast() * dz_e; } if (dy) { auto dy_e = framework::EigenVector::Flatten(*dy); dy_e.device(d) = (x_e >= y_e).template cast() * dz_e; } } }; template struct ElementwiseMinBroadCastGradFunctor { template void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n) { auto x_e = framework::EigenVector::Flatten(*x); auto y_e = framework::EigenVector::Flatten(*y); auto dz_e = framework::EigenVector::Flatten(*dz); auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n)) .broadcast(Eigen::DSizes(pre, 1)) .reshape(Eigen::DSizes(x_e.size())); if (dx) { auto dx_e = framework::EigenVector::Flatten(*dx); dx_e.device(d) = (x_e < y_e_bcast).template cast() * dz_e; } if (dy) { auto dy_e = framework::EigenVector::Flatten(*dy); dy_e.device(d) = ((x_e >= y_e_bcast).template cast() * dz_e) .reshape(Eigen::DSizes(pre, n)) .sum(Eigen::array{{0}}); } } }; template struct ElementwiseMinBroadCast2GradFunctor { template void operator()(Device d, X x, Y y, Z z, dX dx, dY dy, dZ dz, Pre pre, N n, Post post) { auto x_e = framework::EigenVector::Flatten(*x); auto y_e = framework::EigenVector::Flatten(*y); auto dz_e = framework::EigenVector::Flatten(*dz); auto y_e_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) .broadcast(Eigen::DSizes(pre, 1, post)) .reshape(Eigen::DSizes(x_e.size())); if (dx) { auto dx_e = framework::EigenVector::Flatten(*dx); dx_e.device(d) = (x_e < y_e_bcast).template cast() * dz_e; } if (dy) { auto dy_e = framework::EigenVector::Flatten(*dy); dy_e.device(d) = ((x_e >= y_e_bcast).template cast() * dz_e) .reshape(Eigen::DSizes(pre, n, post)) .sum(Eigen::array{{0, 2}}); } } }; template class ElementwiseMinGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { ElementwiseGradCompute, ElementwiseMinBroadCastGradFunctor, ElementwiseMinBroadCast2GradFunctor>(ctx); } }; } // namespace operators } // namespace paddle