# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import argparse import time import math import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler from paddle.fluid import core import unittest from multiprocessing import Process import os import signal from test_dist_base import TestDistRunnerBase, runtime_main IS_SPARSE = True EMBED_SIZE = 32 HIDDEN_SIZE = 256 N = 5 # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 class TestDistWord2vec2x2(TestDistRunnerBase): def get_model(self, batch_size=2): BATCH_SIZE = batch_size def __network__(words): embed_first = fluid.layers.embedding( input=words[0], size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr( name='shared_w', initializer=fluid.initializer.Constant())) embed_second = fluid.layers.embedding( input=words[1], size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr( name='shared_w', initializer=fluid.initializer.Constant())) embed_third = fluid.layers.embedding( input=words[2], size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr( name='shared_w', initializer=fluid.initializer.Constant())) embed_forth = fluid.layers.embedding( input=words[3], size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr( name='shared_w', initializer=fluid.initializer.Constant())) concat_embed = fluid.layers.concat( input=[embed_first, embed_second, embed_third, embed_forth], axis=1) hidden1 = fluid.layers.fc( input=concat_embed, size=HIDDEN_SIZE, act='sigmoid', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant())) predict_word = fluid.layers.fc( input=hidden1, size=dict_size, act='softmax', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant())) cost = fluid.layers.cross_entropy( input=predict_word, label=words[4]) avg_cost = fluid.layers.mean(cost) return avg_cost, predict_word word_dict = paddle.dataset.imikolov.build_dict() dict_size = len(word_dict) first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64') second_word = fluid.layers.data( name='secondw', shape=[1], dtype='int64') third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64') forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64') next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64') avg_cost, predict_word = __network__( [first_word, second_word, third_word, forth_word, next_word]) inference_program = paddle.fluid.default_main_program().clone() sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(avg_cost) train_reader = paddle.batch( paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE) test_reader = paddle.batch( paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE) return inference_program, avg_cost, train_reader, test_reader, None, predict_word if __name__ == "__main__": runtime_main(TestDistWord2vec2x2)