/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/fluid/framework/data_layout_transform.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/platform/mkldnn_helper.h" #include "paddle/fluid/platform/place.h" namespace paddle { namespace platform { using user_function = std::function(const float*)>; class MKLDNNHandler { public: MKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : dev_ctx_(dev_ctx), engine_(engine), key_(base_key), is_reusing_(false) {} std::shared_ptr AcquireSrcMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_src_mem_p"); } std::shared_ptr AcquireWeightsMemory( const mkldnn::memory::desc& md, void* ptr, user_function custom_func = {}) { return this->AcquireMemory(md, ptr, "@user_weights_mem_p", custom_func); } std::shared_ptr AcquireBiasMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_bias_mem_p"); } std::shared_ptr AcquireDstMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_dst_mem_p"); } std::shared_ptr AcquireDiffDstMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_diff_dst_mem_p"); } std::shared_ptr AcquireDiffSrcMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_diff_src_mem_p"); } std::shared_ptr AcquireMemoryFromPrimitive( mkldnn::memory::primitive_desc mdp, void* ptr, const std::string& suffix) { auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false), "Fail to find mem primitive in device context"); if (mem_p == nullptr) { mem_p = std::make_shared(mdp, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); // Mark that reusing happenned. All primitives from operator instance // should be reused or none of them. So we check consistency is_reusing_ = true; } return mem_p; } // This incarnation of AcquireMemory can call user function eg. custom reorder // or preprocessing routine if needed std::shared_ptr AcquireMemory( const mkldnn::memory::desc& md, void* ptr, const std::string& suffix, user_function custom_func = {}) { /*Generate key*/ auto local_key = key_ + suffix; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false), "Fail to find mem primitive in device context"); if (mem_p == nullptr) { // Call custom reorder/preprocessing func if available if (custom_func) { auto reordered_data = custom_func(reinterpret_cast(ptr)); dev_ctx_.SetBlob(local_key + "-custom_reorder", reordered_data); ptr = reinterpret_cast(reordered_data.get()); } mem_p = std::make_shared( mkldnn::memory::primitive_desc{md, engine_}, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); // Mark that reusing happenned. All primitives from operator instance // should be reused or none of them. So we check consistency is_reusing_ = true; } return mem_p; } std::shared_ptr AcquireMemory( const std::shared_ptr& user_memory_p, const std::shared_ptr& target_memory_p, const std::string& suffix, std::vector& pipeline) { // NOLINT auto local_key = key_ + suffix; auto key_reorder_p = key_ + suffix + "reorder_p"; auto stored_reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); if (stored_reorder_p) { pipeline.push_back(*stored_reorder_p); } else { auto reorder_p = std::make_shared(*user_memory_p, *target_memory_p); dev_ctx_.SetBlob(key_reorder_p, reorder_p); pipeline.push_back(*reorder_p); } return target_memory_p; } std::shared_ptr AcquireMemory( mkldnn::memory::primitive_desc& mpd, // NOLINT mkldnn::memory::primitive_desc& user_mpd, // NOLINT const std::shared_ptr user_memory_p, const std::string& suffix, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { // create reorder primitive if the input format is not the preferred one auto local_key = key_ + suffix; auto key_reorder_p = key_ + suffix + "reorder_p"; auto target_memory_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); PADDLE_ENFORCE((target_memory_p != nullptr) || (is_reusing_ == false), "Fail to find mem primitive in device context"); if (target_memory_p == nullptr) { target_memory_p = user_memory_p; std::shared_ptr reorder_p; if (mpd != user_mpd) { target_memory_p = std::make_shared(mpd); std::shared_ptr reorder_p; if (is_INT8) { mkldnn::primitive_attr attri; // attribute for int8 weights and bias data reorder. attri.set_output_scales(mask, scale_data); auto reorder_pd = std::shared_ptr( new mkldnn::reorder::primitive_desc(user_mpd, mpd, attri)); reorder_p = std::shared_ptr(new mkldnn::reorder( *reorder_pd, *user_memory_p, *target_memory_p)); } else { reorder_p = std::make_shared(*user_memory_p, *target_memory_p); } dev_ctx_.SetBlob(key_reorder_p, reorder_p); pipeline.push_back(*reorder_p); } dev_ctx_.SetBlob(local_key, target_memory_p); } else if (!is_persistent) { // Make reorder if needed auto reorder_p = std::static_pointer_cast( dev_ctx_.GetBlob(key_reorder_p)); if (reorder_p != nullptr) { pipeline.push_back(*reorder_p); } is_reusing_ = true; } return target_memory_p; } static std::string GetHash(mkldnn::memory::dims& operand_dims, // NOLINT const std::string& suffix) { return dims2str(operand_dims) + suffix; } template static void SetDstMemory( const framework::ExecutionContext& ctx, framework::Tensor* output, std::vector dst_tz, const mkldnn::engine& engine, std::shared_ptr& dst_pd, // NOLINT std::shared_ptr& dst_memory) { // NOLINT T* output_data = output->mutable_data(ctx.GetPlace()); auto dst_md = platform::MKLDNNMemDesc( {dst_tz}, paddle::framework::ToMKLDNNDataType( framework::DataTypeTrait::DataType), mkldnn::memory::format::nhwc); dst_pd.reset(new mkldnn::memory::primitive_desc(dst_md, engine)); dst_memory.reset(new mkldnn::memory(*dst_pd, to_void_cast(output_data))); } static void AppendKey( std::string* key, const mkldnn::memory::dims& input_dims, const mkldnn::memory::dims& weights_dims, const std::vector& strides, const std::vector& paddings, const std::vector& dilations, const int& groups, const mkldnn::memory::data_type& type, const mkldnn::memory::format& format, const std::string& suffix) { AppendKeyDims(key, input_dims); AppendKeyDims(key, weights_dims); AppendKeyVec(key, strides); AppendKeyVec(key, paddings); AppendKeyVec(key, dilations); AppendKey(key, std::to_string(groups)); AppendKey(key, std::to_string(type)); AppendKey(key, std::to_string(format)); AppendKey(key, suffix); } protected: static void AppendKeyDims(std::string* key, const mkldnn::memory::dims& dims) { for (unsigned int i = 0; i < dims.size(); i++) { AppendKey(key, std::to_string(dims[i])); } } static void AppendKeyVec(std::string* key, const std::vector& dims) { for (unsigned int i = 0; i < dims.size(); i++) { AppendKey(key, std::to_string(dims[i])); } } static void AppendKey(std::string* key, const std::string& s) { key->append(s); } static std::string dims2str(const mkldnn::memory::dims& operand_dims) { std::string dstr = ""; for (size_t i = 0; i < operand_dims.size(); ++i) { dstr += std::to_string(operand_dims[i]) + "-"; } return dstr; } protected: const MKLDNNDeviceContext& dev_ctx_; mkldnn::engine engine_; std::string key_; bool is_reusing_; }; class TransposeMKLDNNHandler : public MKLDNNHandler { public: TransposeMKLDNNHandler(std::vector& dims, // NOLINT std::vector& axis, // NOLINT const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), dims_(dims), axis_(axis), logical_axis_(dims.size(), 0) {} std::shared_ptr AcquireSrcMemory( const mkldnn::memory::format& fmt, void* ptr) { auto local_key = key_ + "@user_src_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false), " find mem primitive in device context"); if (mem_p == nullptr) { // Make memory descriptor using input format, unless it // cannot be trusted (nchw) then make up memory fmt manually for (size_t i = 0; i < logical_axis_.size(); ++i) { logical_axis_[i] = i; } auto src_md = fmt != mkldnn::memory::format::nchw ? platform::MKLDNNMemDesc( dims_, platform::MKLDNNGetDataType(), fmt) : Axis2MemoryDesc(dims_, logical_axis_); mem_p = std::make_shared( mkldnn::memory::primitive_desc{src_md, engine_}, ptr); dev_ctx_.SetBlob(local_key, mem_p); } else { mem_p->set_data_handle(ptr); // Mark that reusing happenned. All primitives from operator instance // should be reused or none of them. So we check consistency is_reusing_ = true; } return mem_p; } std::shared_ptr AcquireDstMemory(framework::Tensor* output, platform::Place place) { auto local_key = key_ + "@user_dst_mem_p"; auto mem_p = std::static_pointer_cast(dev_ctx_.GetBlob(local_key)); PADDLE_ENFORCE((mem_p != nullptr) || (is_reusing_ == false), " find mem primitive in device context"); if (mem_p == nullptr) { auto dst_mdp = mkldnn::memory::primitive_desc{ Axis2MemoryDesc(dims_, axis_), engine_}; auto dst_data = output->mutable_data( place, paddle::memory::Allocator::kDefault, dst_mdp.get_size()); mem_p = std::make_shared(dst_mdp, dst_data); dev_ctx_.SetBlob(local_key, mem_p); } else { auto dst_data = output->mutable_data(place); mem_p->set_data_handle(dst_data); // Mark that reusing happenned. All primitives from operator instance // should be reused or none of them. So we check consistency is_reusing_ = true; } return mem_p; } std::shared_ptr AcquireTranspose( std::shared_ptr dst_memory_p, std::shared_ptr src_memory_p) { auto prim_key = key_ + "@transpose_p"; auto transpose_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); PADDLE_ENFORCE((transpose_p != nullptr) || (is_reusing_ == false), "Fail to find convolution primitive in device context"); if (transpose_p == nullptr) { transpose_p = std::make_shared(*(src_memory_p), *(dst_memory_p)); dev_ctx_.SetBlob(prim_key, transpose_p); } else { is_reusing_ = true; } return transpose_p; } static std::string GetHash(std::vector& shape, // NOLINT std::vector& axis, // NOLINT const std::string& suffix) { return dims2str(shape) + dims2str(axis) + suffix; } protected: mkldnn_memory_desc_t Axis2MemoryDesc(std::vector& nchw_tz, // NOLINT std::vector& axis // NOLINT ) { mkldnn_memory_desc_t mem_fmt; mem_fmt.primitive_kind = mkldnn_memory; mem_fmt.ndims = axis.size(); for (unsigned int i = 0; i < nchw_tz.size(); ++i) { mem_fmt.dims[i] = nchw_tz[i]; // logical dimensions (nchw format, // regardless physical layout) } mem_fmt.data_type = mkldnn_f32; mem_fmt.format = mkldnn_blocked; unsigned int total_stride = 1; for (int i = nchw_tz.size() - 1; i >= 0; --i) { mem_fmt.layout_desc.blocking.padding_dims[i] = nchw_tz[i]; // logical dimensions (nchw format, regardless physical // layout) mem_fmt.layout_desc.blocking.block_dims[i] = 1; mem_fmt.layout_desc.blocking.offset_padding_to_data[i] = 0; // no offset mem_fmt.layout_desc.blocking.strides[0][axis[i]] = total_stride; mem_fmt.layout_desc.blocking.strides[1][axis[i]] = 1; total_stride *= nchw_tz[axis[i]]; } mem_fmt.layout_desc.blocking.offset_padding = 0; // no initial offset return mem_fmt; } private: std::vector dims_; std::vector axis_; std::vector logical_axis_; }; template class ConvMKLDNNTemplateHandler : public MKLDNNHandler { public: ConvMKLDNNTemplateHandler( std::shared_ptr conv_pd, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key) { conv_pd_ = conv_pd; } ConvMKLDNNTemplateHandler( std::shared_ptr conv_pd, std::shared_ptr conv_bwd_data_pd, std::shared_ptr conv_bwd_weights_pd, const platform::MKLDNNDeviceContext& dev_ctx, mkldnn::engine engine, const std::string& base_key) : platform::MKLDNNHandler(dev_ctx, engine, base_key), conv_pd_(conv_pd), conv_bwd_weights_pd_(conv_bwd_weights_pd), conv_bwd_data_pd_(conv_bwd_data_pd) { // If we are in Grad operatgor then update a key with BWD suffix to // distinguish from FWD memory primitives key_ += "-BWD"; } size_t GetDstMemorySize() const { return conv_pd_->dst_primitive_desc().get_size(); } mkldnn::memory::format GetDstFormat() const { return static_cast( conv_pd_->dst_primitive_desc().desc().data.format); } size_t GetDiffWeightsMemorySize() const { return conv_bwd_weights_pd_->diff_weights_primitive_desc().get_size(); } size_t GetDiffSourceMemorySize() const { return conv_bwd_data_pd_->diff_src_primitive_desc().get_size(); } std::shared_ptr AcquireSrcMemoryFromWeightsPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto src_pd = conv_bwd_weights_pd_->src_primitive_desc(); auto user_pd = user_memory_p->get_primitive_desc(); return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@weights-src_mem_p", pipeline); } std::shared_ptr AcquireDiffDstMemoryFromWeightsPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto diff_dst_pd = conv_bwd_weights_pd_->diff_dst_primitive_desc(); auto user_pd = user_memory_p->get_primitive_desc(); return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p, "@weights-diff_dst_mem_p", pipeline); } std::shared_ptr AcquireDiffWeightsMemoryFromWeightsPrimitive( void* ptr) { return this->AcquireMemoryFromPrimitive( conv_bwd_weights_pd_->diff_weights_primitive_desc(), ptr, "@diff_weights_mem_p"); } std::shared_ptr AcquireDiffDstMemoryFromDataPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto diff_dst_pd = conv_bwd_data_pd_->diff_dst_primitive_desc(); auto user_pd = user_memory_p->get_primitive_desc(); return this->AcquireMemory(diff_dst_pd, user_pd, user_memory_p, "@data-diff_dst_mem_p", pipeline); } std::shared_ptr AcquireWeightsMemoryFromDataPrimitive( const std::shared_ptr user_weights_memory_p, std::vector& pipeline) { // NOLINT auto weights_pd = conv_bwd_data_pd_->weights_primitive_desc(); auto user_pd = user_weights_memory_p->get_primitive_desc(); return this->AcquireMemory(weights_pd, user_pd, user_weights_memory_p, "@data-weights_mem_p", pipeline); } std::shared_ptr AcquireResidualDataMemory( const mkldnn::memory::desc& md, void* ptr) { return this->AcquireMemory(md, ptr, "@user_residual_data_mem_p"); } std::shared_ptr AcquireDstMemoryFromResidualDataMemory( const std::shared_ptr& user_residual_memory_p, void* dst_ptr, std::vector& pipeline) { // NOLINT return this->AcquireMemory(user_residual_memory_p, this->AcquireDstMemoryFromPrimitive(dst_ptr), "@residual_data_mem_p", pipeline); } std::shared_ptr AcquireDiffSrcMemoryFromDataPrimitive( void* ptr) { return this->AcquireMemoryFromPrimitive( conv_bwd_data_pd_->diff_src_primitive_desc(), ptr, "@diff_src_mem_p"); } std::shared_ptr AcquireDstMemoryFromPrimitive(void* ptr) { return this->AcquireMemoryFromPrimitive(conv_pd_->dst_primitive_desc(), ptr, "@dst_mem_p"); } std::shared_ptr AcquireSrcMemoryFromPrimitive( const std::shared_ptr user_memory_p, std::vector& pipeline) { // NOLINT auto src_pd = conv_pd_->src_primitive_desc(); auto user_pd = user_memory_p->get_primitive_desc(); return this->AcquireMemory(src_pd, user_pd, user_memory_p, "@src_mem_p", pipeline); } std::shared_ptr AcquireWeightsMemoryFromPrimitive( const std::shared_ptr user_weights_memory_p, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { auto user_weights_pd = user_weights_memory_p->get_primitive_desc(); auto weights_pd = conv_pd_->weights_primitive_desc(); return this->AcquireMemory( weights_pd, user_weights_pd, user_weights_memory_p, "@weights_mem_p", pipeline, is_persistent, is_INT8, scale_data, mask); } std::shared_ptr AcquireBiasMemoryFromPrimitive( const std::shared_ptr user_bias_memory_p, std::vector& pipeline, // NOLINT bool is_persistent = false, bool is_INT8 = false, std::vector scale_data = {1.0f}, int mask = 0) { // NOLINT auto user_bias_pd = user_bias_memory_p->get_primitive_desc(); auto bias_pd = conv_pd_->bias_primitive_desc(); return this->AcquireMemory(bias_pd, user_bias_pd, user_bias_memory_p, "@bias_mem_p", pipeline, is_persistent, is_INT8, scale_data, mask); } std::shared_ptr AcquireConvolution( std::shared_ptr src_memory_p, std::shared_ptr weights_memory_p, std::shared_ptr dst_memory_p) { auto prim_key = key_ + "@conv_p"; auto conv_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false), "Fail to find convolution primitive in device context"); if (conv_p == nullptr) { conv_p = std::make_shared(*conv_pd_, *(src_memory_p), *(weights_memory_p.get()), *(dst_memory_p.get())); dev_ctx_.SetBlob(prim_key, conv_p); } else { is_reusing_ = true; } return conv_p; } std::shared_ptr AcquireConvolution( std::shared_ptr src_memory_p, std::shared_ptr weights_memory_p, std::shared_ptr bias_memory_p, std::shared_ptr dst_memory_p) { auto prim_key = key_ + "@conv_p"; auto conv_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); PADDLE_ENFORCE((conv_p != nullptr) || (is_reusing_ == false), "Fail to find convolution primitive in device context"); if (conv_p == nullptr) { conv_p = std::make_shared( *conv_pd_, *(src_memory_p), *(weights_memory_p.get()), *(bias_memory_p.get()), *(dst_memory_p.get())); dev_ctx_.SetBlob(prim_key, conv_p); } else { is_reusing_ = true; } return conv_p; } std::shared_ptr AcquireConvolutionBackwardWeights( std::shared_ptr src_memory_p, std::shared_ptr diff_dst_memory_p, std::shared_ptr diff_weights_memory_p) { auto prim_key = key_ + "@conv_bwd_weights_p"; auto conv_bwd_weights_p = std::static_pointer_cast( dev_ctx_.GetBlob(prim_key)); PADDLE_ENFORCE( (conv_bwd_weights_p != nullptr) || (is_reusing_ == false), "Fail to find convolution bwd weights primitive in device context"); if (conv_bwd_weights_p == nullptr) { // create backward conv primitive for weights conv_bwd_weights_p = std::make_shared( *conv_bwd_weights_pd_, *src_memory_p, *diff_dst_memory_p, *diff_weights_memory_p); dev_ctx_.SetBlob(prim_key, conv_bwd_weights_p); } else { is_reusing_ = true; } return conv_bwd_weights_p; } std::shared_ptr AcquireConvolutionBackwardData( std::shared_ptr diff_dst_memory_p, std::shared_ptr weights_memory_p, std::shared_ptr diff_src_memory_p) { auto prim_key = key_ + "@conv_bwd_data_p"; auto conv_bwd_data_p = std::static_pointer_cast(dev_ctx_.GetBlob(prim_key)); PADDLE_ENFORCE( (conv_bwd_data_p != nullptr) || (is_reusing_ == false), "Fail to find convolution bwd data primitive in device context"); if (conv_bwd_data_p == nullptr) { conv_bwd_data_p = std::make_shared( *conv_bwd_data_pd_, *diff_dst_memory_p, *weights_memory_p, *diff_src_memory_p); dev_ctx_.SetBlob(prim_key, conv_bwd_data_p); } else { is_reusing_ = true; } return conv_bwd_data_p; } // Generate keys for storing/retriving primitives for this operator // TODO(jczaja): Make hashing function more optimial static std::string GetHash(mkldnn::memory::dims& input_dims, // NOLINT mkldnn::memory::dims& weights_dims, // NOLINT std::vector& strides, // NOLINT std::vector& paddings, // NOLINT std::vector& dilations, // NOLINT int groups, const std::string& suffix) { return dims2str(input_dims) + dims2str(weights_dims) + dims2str(strides) + dims2str(paddings) + dims2str(dilations) + std::to_string(groups) + suffix; } private: std::shared_ptr conv_pd_; std::shared_ptr conv_bwd_weights_pd_; std::shared_ptr conv_bwd_data_pd_; }; using ConvMKLDNNHandler = ConvMKLDNNTemplateHandler; using ConvTransposeMKLDNNHandler = ConvMKLDNNTemplateHandler; template static std::shared_ptr SetDstMemory( const framework::ExecutionContext& ctx, framework::Tensor* output, const std::shared_ptr& handler) { T* output_data = output->mutable_data( ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize()); std::shared_ptr dst_memory_p = handler->AcquireDstMemoryFromPrimitive(to_void_cast(output_data)); return dst_memory_p; } template static std::shared_ptr SetDstMemoryHandler( const framework::ExecutionContext& ctx, framework::Tensor* output, const std::shared_ptr& handler) { T* output_data = output->mutable_data( ctx.GetPlace(), ::paddle::memory::Allocator::kDefault, handler->GetDstMemorySize()); std::shared_ptr dst_memory_p; dst_memory_p->set_data_handle(to_void_cast(output_data)); return dst_memory_p; } } // namespace platform } // namespace paddle