/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/distributed/ps/table/memory_sparse_table.h" #include #include #include #include // NOLINT #include "google/protobuf/text_format.h" #include "gtest/gtest.h" #include "paddle/fluid/distributed/ps/table/table.h" #include "paddle/fluid/distributed/the_one_ps.pb.h" namespace paddle { namespace distributed { TEST(MemorySparseTable, SGD) { int emb_dim = 8; int trainers = 2; TableParameter table_config; table_config.set_table_class("MemorySparseTable"); table_config.set_shard_num(10); FsClientParameter fs_config; Table *table = new MemorySparseTable(); table->SetShard(0, 1); TableAccessorParameter *accessor_config = table_config.mutable_accessor(); accessor_config->set_accessor_class("CtrCommonAccessor"); accessor_config->set_fea_dim(11); accessor_config->set_embedx_dim(8); accessor_config->set_embedx_threshold(5); accessor_config->mutable_ctr_accessor_param()->set_nonclk_coeff(0.2); accessor_config->mutable_ctr_accessor_param()->set_click_coeff(1); accessor_config->mutable_ctr_accessor_param()->set_base_threshold(0.5); accessor_config->mutable_ctr_accessor_param()->set_delta_threshold(0.2); accessor_config->mutable_ctr_accessor_param()->set_delta_keep_days(16); accessor_config->mutable_ctr_accessor_param()->set_show_click_decay_rate( 0.99); accessor_config->mutable_embed_sgd_param()->set_name("SparseNaiveSGDRule"); auto *naive_param = accessor_config->mutable_embed_sgd_param()->mutable_naive(); naive_param->set_learning_rate(0.1); naive_param->set_initial_range(0.3); naive_param->add_weight_bounds(-10.0); naive_param->add_weight_bounds(10.0); accessor_config->mutable_embedx_sgd_param()->set_name("SparseNaiveSGDRule"); naive_param = accessor_config->mutable_embedx_sgd_param()->mutable_naive(); naive_param->set_learning_rate(0.1); naive_param->set_initial_range(0.3); naive_param->add_weight_bounds(-10.0); naive_param->add_weight_bounds(10.0); auto ret = table->Initialize(table_config, fs_config); ASSERT_EQ(ret, 0); // pull parameters for create and check std::vector init_keys = {0, 1, 2, 3, 4}; std::vector init_fres = {1, 1, 1, 1, 1}; std::vector init_values; init_values.resize(init_keys.size() * (emb_dim + 3)); auto value = PullSparseValue(init_keys, init_fres, emb_dim); TableContext table_context; table_context.value_type = Sparse; table_context.pull_context.pull_value = value; table_context.pull_context.values = init_values.data(); table->Pull(table_context); // table->PullSparse(init_values.data(), value); // for check std::vector total_gradients; total_gradients.resize(init_keys.size() * (4 + emb_dim)); memset(total_gradients.data(), 0, sizeof(float) * total_gradients.size()); // push gradient std::vector> trainer_keys; std::vector> trainer_gradient_values; trainer_keys.resize(trainers); trainer_gradient_values.resize(trainers); float start = 0.0; for (int i = 0; i < trainers; i++) { start = 0.0; trainer_keys[i] = init_keys; for (size_t j = 0; j < trainer_keys[i].size(); j++) { auto id = trainer_keys[i][j]; for (int k = 0; k < emb_dim + 4; k++) { trainer_gradient_values[i].push_back(start); total_gradients[id * (emb_dim + 4) + k] += start; start += 0.1; } } } std::shared_ptr<::ThreadPool> pool_ = std::make_shared<::ThreadPool>(trainers); std::vector> task_status; for (int i = 0; i < trainers; i++) { auto &push_keys = trainer_keys[i]; auto &push_values = trainer_gradient_values[i]; auto task = [table, &push_keys, &push_values] { TableContext table_context; table_context.value_type = Sparse; table_context.push_context.keys = push_keys.data(); table_context.push_context.values = push_values.data(); table_context.num = push_keys.size(); table->Push(table_context); // table->PushSparse(push_keys.data(), push_values.data(), // push_keys.size()); }; task_status.push_back(pool_->enqueue(std::move(task))); } for (auto &status : task_status) { status.wait(); } std::vector pull_values; pull_values.resize(init_keys.size() * (emb_dim + 3)); TableContext table_context1; table_context1.value_type = Sparse; table_context1.pull_context.pull_value = value; table_context1.pull_context.values = pull_values.data(); table->Pull(table_context1); // table->PullSparse(pull_values.data(), value); for (size_t i = 0; i < init_keys.size(); ++i) { for (int j = 2; j < emb_dim + 3; ++j) { auto update_val = init_values[i * (emb_dim + 1) + j] - 0.1 * total_gradients[3 + i * (emb_dim + 4) + j]; VLOG(3) << total_gradients[i * (emb_dim + 4) + j + 3] << ":" << init_values[i * (emb_dim + 1) + j]; VLOG(3) << update_val << ": " << pull_values[i * (emb_dim + 1) + j]; } } } } // namespace distributed } // namespace paddle