// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/utils/io_utils.h" namespace paddle { namespace inference { namespace { bool pd_tensor_equal(const paddle::PaddleTensor& ref, const paddle::PaddleTensor& t) { bool is_equal = true; VLOG(3) << "ref.name: " << ref.name << ", t.name: " << t.name; VLOG(3) << "ref.dtype: " << ref.dtype << ", t.dtype: " << t.dtype; VLOG(3) << "ref.lod_level: " << ref.lod.size() << ", t.dtype: " << t.lod.size(); VLOG(3) << "ref.data_len: " << ref.data.length() << ", t.data_len: " << t.data.length(); return is_equal && (ref.name == t.name) && (ref.lod == t.lod) && (ref.dtype == t.dtype) && (std::memcmp(ref.data.data(), t.data.data(), ref.data.length()) == 0); } template void test_io_utils() { std::vector input({6, 8}); paddle::PaddleTensor in; in.name = "Hello"; in.shape = {1, 2}; in.lod = std::vector>{{0, 1}}; in.data = paddle::PaddleBuf(static_cast(input.data()), input.size() * sizeof(T)); in.dtype = paddle::inference::PaddleTensorGetDType(); std::stringstream ss; paddle::inference::SerializePDTensorToStream(&ss, in); paddle::PaddleTensor out; paddle::inference::DeserializePDTensorToStream(ss, &out); ASSERT_TRUE(pd_tensor_equal(in, out)); } } // namespace } // namespace inference } // namespace paddle TEST(infer_io_utils, float32) { paddle::inference::test_io_utils(); } TEST(infer_io_utils, tensors) { // Create a float32 tensor. std::vector input_fp32({1.1f, 3.2f, 5.0f, 8.2f}); paddle::PaddleTensor in_fp32; in_fp32.name = "Tensor.fp32_0"; in_fp32.shape = {2, 2}; in_fp32.data = paddle::PaddleBuf(static_cast(input_fp32.data()), input_fp32.size() * sizeof(float)); in_fp32.dtype = paddle::inference::PaddleTensorGetDType(); // Create a int64 tensor. std::vector input_int64({5, 8}); paddle::PaddleTensor in_int64; in_int64.name = "Tensor.int64_0"; in_int64.shape = {1, 2}; in_int64.lod = std::vector>{{0, 1}}; in_int64.data = paddle::PaddleBuf(static_cast(input_int64.data()), input_int64.size() * sizeof(int64_t)); in_int64.dtype = paddle::inference::PaddleTensorGetDType(); // Serialize tensors. std::vector tensors_in({in_fp32}); std::string file_path = "./io_utils_tensors"; paddle::inference::SerializePDTensorsToFile(file_path, tensors_in); // Deserialize tensors. std::vector tensors_out; paddle::inference::DeserializePDTensorsToFile(file_path, &tensors_out); // Check results. ASSERT_EQ(tensors_in.size(), tensors_out.size()); for (size_t i = 0; i < tensors_in.size(); ++i) { ASSERT_TRUE( paddle::inference::pd_tensor_equal(tensors_in[i], tensors_out[i])); } } TEST(shape_info_io, read_and_write) { const std::string path = "test_shape_info_io"; std::map> min_shape, max_shape, opt_shape; std::map> min_value, max_value, opt_value; min_shape.insert( std::make_pair("test1", std::vector{1, 3, 112, 112})); max_shape.insert( std::make_pair("test1", std::vector{1, 3, 224, 224})); opt_shape.insert( std::make_pair("test1", std::vector{1, 3, 224, 224})); min_value.insert( std::make_pair("test1", std::vector{1, 3, 112, 112})); max_value.insert( std::make_pair("test1", std::vector{1, 3, 224, 224})); opt_value.insert( std::make_pair("test1", std::vector{1, 3, 224, 224})); paddle::inference::SerializeShapeRangeInfo( path, min_shape, max_shape, opt_shape, min_value, max_value, opt_value); min_shape.clear(); max_shape.clear(); opt_shape.clear(); min_value.clear(); max_value.clear(); opt_value.clear(); opt_shape.insert( std::make_pair("test2", std::vector{1, 3, 224, 224})); paddle::inference::DeserializeShapeRangeInfo(path, &min_shape, &max_shape, &opt_shape, &min_value, &max_value, &opt_value); min_shape.insert(std::make_pair("test1", std::vector{1, 3, 56, 56})); std::vector names{"test1"}; paddle::inference::UpdateShapeRangeInfo( path, min_shape, max_shape, opt_shape, names); ASSERT_THROW(paddle::inference::DeserializeShapeRangeInfo("no_exists_file", &min_shape, &max_shape, &opt_shape, &min_value, &max_value, &opt_value); , paddle::platform::EnforceNotMet); }