/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; template using EigenMatrix = framework::EigenMatrix; template class SequenceAvgPoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in = context.Input("X"); auto* out = context.Output("Out"); auto dims = in->dims(); auto lod = in->lod(); int64_t w = in->numel() / dims[0]; out->mutable_data(context.GetPlace()); auto place = context.GetEigenDevice(); for (int i = 0; i < lod[0].size() - 1; ++i) { Tensor in_t = in->Slice(static_cast(lod[0][i]), static_cast(lod[0][i + 1])); Tensor out_t = out->Slice(i, i + 1); int64_t h = static_cast(lod[0][i + 1] - lod[0][i]); auto in_e = EigenMatrix::From(in_t, {h, w}); auto out_e = EigenMatrix::From(out_t, {h, w}); out_e.device(place) = in_e.mean(Eigen::array({{0}})); } } }; template class SequenceAvgPoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in = context.Output("X"); auto* in_g = context.Output(framework::GradVarName("X")); auto* out_g = context.Input(framework::GradVarName("Out")); auto dims = in->dims(); auto lod = in->lod(); int64_t w = in->numel() / dims[0]; in_g->mutable_data(context.GetPlace()); auto place = context.GetEigenDevice(); for (int i = 0; i < lod[0].size() - 1; ++i) { auto in_g_t = in_g->Slice(static_cast(lod[0][i]), static_cast(lod[0][i + 1])); auto out_g_t = out_g->Slice(i, i + 1); int64_t h = static_cast(lod[0][i + 1] - lod[0][i]); auto in_g_e = EigenMatrix::From(in_g_t, {h, w}); auto out_g_e = EigenMatrix::From(out_g_t, {1, w}); Eigen::DSizes bcast(h, w); in_g_e.device(place) = (out_g_e / static_cast(h)).broadcast(bcast); } } }; } // namespace operators } // namespace paddle